cho tam giác abc vuông tại a.một đường thẳng cắt hai cạnh ab,ac lần lượt tại D và E.Chứng minh rằng : CD2-CB2 = ED2-EB2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Pitago cho tam giác vuông ACD:
\(CD^2=AD^2+AC^2\)
Áp dụng định lý Pitago cho tam giác vuông ABC:
\(CB^2=AB^2+AC^2\)
\(\Rightarrow CD^2-CB^2=AD^2+AC^2-AB^2-AC^2=AD^2-AB^2\) (1)
Áp dụng định lý Pitago cho tam giác vuông ADE:
\(ED^2=AD^2+AE^2\)
Áp dụng định lý Pitago cho tam giác vuông ABE:
\(EB^2=AB^2+AE^2\)
\(\Rightarrow ED^2-EB^2=AD^2+AE^2-AB^2-AE^2=AD^2-AB^2\) (2)
(1);(2) \(\Rightarrow CD^2-CB^2=ED^2-EB^2\)
Ta cần CM: \(CD^2-CB^2=ED^2-EB^2\Leftrightarrow CD^2-AB^2-AC^2=ED^2-EB^2\Leftrightarrow EB^2-AB^2=ED^2-\left(CD^2-AC^2\right)\Leftrightarrow AE^2=ED^2-AD^2\left(luônđúng\right)\) (vì các tam giác ACD, ABE,ADE đều vuông tại A) \(\Rightarrowđpcm\)
a) Xét ΔHEA vuông tại E và ΔHDB vuông tại D có
\(\widehat{AHE}=\widehat{BHD}\)(hai góc đối đỉnh)
Do đó: ΔHEA\(\sim\)ΔHDB(g-g)
1: Xét ΔCAD có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCAD cân tại C
a: góc OBE+góc OCE=180 độ
=>OBEC nội tiếp
b: Xét ΔEBD và ΔEAB có
góc EBD=góc EAB
góc BED chung
=>ΔEBD đồng dạng với ΔEAB
=>EB/EA=ED/EB
=>EB^2=EA*ED
Lời giải:
1. $CH=\sqrt{AC^2-AH^2}=\sqrt{5^2-3^2}=4$ (cm) theo định lý Pitago
Áp dụng hệ thức lượng trong tam giác vuông:
$BH=\frac{AH^2}{CH}=\frac{3^2}{4}=2,25$ (cm)
$BC=BH+CH=2,25+4=6,25$ (cm)
2.
Vì $AH$ là đường kính nên $\widehat{AEH}=\widehat{AFH}=90^0$ (góc nt chắn nửa đường tròn)
Tứ giác $AEHF$ có $\widehat{A}=\widehat{E}=\widehat{F}=90^0$ nên là hình chữ nhật.
3.
Vì $AEHF$ là hcn nên $\widehat{AEF}=\widehat{AHF}$
Mà $\widehat{AHF}=\widehat{C}$ (cùng phụ $\widehat{FHC}$)
$\Rightarrow \widehat{AEF}=\widehat{C}$ nên $BEFC$ là tứ giác nội tiếp.
3. Gọi $T$ là trung điểm $HB$
Tam giavs $BEH$ vuông tại $E$ nên $ET=\frac{1}{2}BH=TH$
$\Rightarrow ETH$ cân tại $T$
$\Rightarrow \widehat{TEH}=\widehat{THE}=\widehat{C}$ (hai góc đồng vị với $EF\parallel AC$)
$=\widehat{AEF}$
$\Rightarrow \widehat{TEF}=\widehat{TEH}+\widehat{HEF}=\widehat{AEF}+\widehat{HEF}=\widehat{AEH}=90^0$
$\Rightarrow TE\perp EF$ nên $EF$ là tiếp tuyến đường tròn đường kính $BH$
Tương tự $EF$ là tiếp tuyến đường tròn đường kính $CH$
Ta có đpcm.
ΔAED vuông tại A
=>\(AE^2+AD^2=ED^2\)
ΔAEB vuông tại A
=>\(AE^2+AB^2=EB^2\)
ΔACD vuông tại A
=>\(AC^2+AD^2=CD^2\)
ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
\(CD^2-CB^2=CA^2+AD^2-CA^2-AB^2=AD^2-AB^2\)
\(ED^2-EB^2=AE^2+AD^2-AE^2-AB^2=AD^2-AB^2\)
Do đó: \(CD^2-CB^2=ED^2-EB^2\)