K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2020

O A E B F C G H D

Đặt OB = OD = a. Hãy chứng minh OE = a

 Tương tự, OF = OG = OH = a 

 Từ đó suy ra sáu điểm E, B, F, G, D, H cùng thuộc một đường tròn ( O;a )

24 tháng 11 2022

Xét ΔABD có AB=AD và góc BAD=60 độ

nên ΔABD đều

Ta có: ΔDAB cân tại D

mà DE là đường trung tuyến

nên DE vuông góc với BE

=>E nằm trên đường tròn đường kính BD(1)

Ta có:ΔBAD cân tại B

ma BH là đường trung tuyến

nên BH vuông góc với HD

=>H nằm trên đường tròn đường kính BD(2)

Xét ΔCBD có CB=CD và góc BCD=60 độ

nên ΔCBD đều

Ta có: ΔBDC cân tại D

mà DF là đường trung tuyến

nen DF vuông góc với BF

=>F nằm trên đường tròn đường kính BD(3)

Ta có: ΔBDC cân tại B

mà BG là đường trung tuyến

nên BG vuông góc với GD
=>G nằm trên đường tròn đường kính BD(4)

Từ (1), (2), (3) và (4) suy ra E,B,F,G,D,H cùng nằm trên 1 đường tròn

22 tháng 12 2023

Vì ABCD  là hình thoi nên ⇒ tam giác ABD cân tại A

Vì O là trung điểm DB nên AO là truyến là đường phân giác của tam giác ABD

⇒ \(\widehat{DAO}\) = 400

⇒ \(\widehat{DAB}\) = 400 + 400 = 1800

⇒ \(\widehat{ADC}\) = 1800 - 800 = 1000

⇒ \(\widehat{DCB}\) = 1800 - 1000 = 800

\(\Rightarrow\) \(\widehat{ABC}\) = 1800 - 800 = 1000

17 tháng 10 2021

Vì ABCD là hình thoi nên \(AB=BC=CD=DA=20\left(cm\right)\)

Và AC cắt BD tại O nên O là trung điểm AC,BD

\(\Rightarrow AC=2AO=32\left(cm\right);BD=2OB=24\left(cm\right)\)

24 tháng 2 2019

5 tháng 6 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Đặt OB = OD = a. Hãy chứng minh OE = a. Tương tự, OF = OG = OH = a. Từ đó suy ra sáu điểm E, B, F, G, D, H cùng thuộc một đường tròn (O;a).