K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
\(D=\dfrac{2^2-1}{2^2}+\dfrac{3^2-1}{3^2}+...+\dfrac{2025^2-1}{2025^2}\)
\(=\left(\dfrac{2^2}{2^2}+\dfrac{3^2}{3^2}+...+\dfrac{2025^2}{2025^2}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2025^2}\right)\)
\(=\left(1+1+...+1\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2025^2}\right)\)
\(=2024-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+....+\dfrac{1}{2025^2}\right)\)
Đặt \(E=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2025^2}\)
Do \(E>0\Rightarrow D< 2024\) (1)
Lại có:
\(E< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2024.2025}\)
\(E< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2024}-\dfrac{1}{2025}\)
\(E< 1-\dfrac{1}{2025}< 1\)
\(\Rightarrow D-E>2024-1=2023\) (2)
(1);(2) \(\Rightarrow2023< D< 2024\)
\(\Rightarrow D\) nằm giữa 2 số tự nhiên liên tiếp nên D ko thể là số tự nhiên