so sánh A và B
A=\(\frac{1}{2}\)và B =\(\frac{\sqrt{x}-2}{3\sqrt{x}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: x>=0; x<>1
\(A=\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{-\left(5\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
b: \(A-\dfrac{2}{3}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{2}{3}\)
\(=\dfrac{-15\sqrt{x}+6-2\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}=\dfrac{-17\sqrt{x}}{3\left(\sqrt{x}+3\right)}< =0\)
Do đó: A<=2/3
Lời giải:
Đặt \(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{2004}}\)
Xét số hạng tổng quát: \(\frac{1}{\sqrt{n}}\) ta có:
\(\frac{1}{\sqrt{n}}=\frac{2}{2\sqrt{n}}> \frac{2}{\sqrt{n}+\sqrt{n+1}}=\frac{2(\sqrt{n+1}-\sqrt{n})}{(\sqrt{n+1}+\sqrt{n})(\sqrt{n+1}-\sqrt{n})}=2(\sqrt{n+1}-\sqrt{n})\)
Do đó:
\(\frac{1}{\sqrt{1}}> 2(\sqrt{2}-\sqrt{1})\)
\(\frac{1}{\sqrt{2}}> 2(\sqrt{3}-\sqrt{2})\)
\(\frac{1}{\sqrt{3}}> 2(\sqrt{4}-\sqrt{3})\)
............
\(\frac{1}{\sqrt{2004}}> 2(\sqrt{2005}-\sqrt{2004})\)
Cộng theo vế:
$A>2(\sqrt{2005}-1)>86$
Vậy..........
a) ĐKXĐ: \(x\ge0;x\ne9\)
\(B=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3-11\sqrt{x}}{9-x}\)
\(B=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}-\frac{3-11\sqrt{x}}{x-9}\)
\(B=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-3+11\sqrt{x}}{x-9}\)
\(B=\frac{2x-6+x+4\sqrt{x}+3-3+11\sqrt{x}}{x-9}\)
\(B=\frac{3x-6+15\sqrt{x}}{x-9}\)
a)ĐKXĐ:x>=0;x khác 9
A=[\(\frac{\sqrt{x}}{\sqrt{x}-3}\) - \(\frac{3\sqrt{x}+9}{x-9}\)+ \(\frac{2\sqrt{x}}{\sqrt{x}+3}\)] \(\div\) [\(\frac{2\sqrt{x}-2}{\sqrt{x}-3}\)-1]
A=[\(\frac{\sqrt{x}\left(\sqrt{x}-3\right)-3\sqrt{x}-9+2\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}\)] \(\div\) [\(\frac{\left(2\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-x+9}{x-9}\)]
A=[\(\frac{3x-12\sqrt{x}-9}{x-9}\)].[\(\frac{x-9}{x-4\sqrt{x}+3}\)]
A=\(\frac{3x-12\sqrt{x}-9}{x-4\sqrt{x}+3}\)