K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2020

Pn=\(\frac{2}{3}\times\frac{5}{6}\times...\times\frac{\frac{\left(n+1\right)n}{2}-1}{\frac{\left(n+1\right)n}{2}}\)

= \(\frac{4}{6}\times\frac{10}{12}\times...\times\frac{n\left(n+1\right)-2}{n\left(n+1\right)}\)

= \(\frac{1\times4}{2\times3}\times\frac{2\times5}{3\times4}\times...\times\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)

= \(\frac{1\times2\times...\times\left(n-1\right)}{2\times3\times...\times n}\times\frac{4\times5\times...\times\left(n+2\right)}{3\times4\times...\times\left(n+1\right)}\)

= \(\frac{1}{n}\times\frac{n+2}{3}\)

=\(\frac{n+2}{3n}\)

=> \(\frac{1}{Pn}\)=\(\frac{3n}{n+2}\)

Đến đây thì bạn tự giải tiếp nhé.

Chúc bạn học tốt!

NV
13 tháng 2 2020

\(1+2+...+n=\frac{n\left(n+1\right)}{2}\)

\(\Rightarrow1-\frac{1}{1+2+...+n}=1-\frac{2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)

\(\Rightarrow P_n=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)

\(P_n=\frac{1.2.3...\left(n-1\right)}{2.3.4...n}.\frac{4.5...\left(n+2\right)}{3.4...\left(n+1\right)}=\frac{n+2}{3n}\)

\(\Rightarrow\frac{1}{P_n}=\frac{3n}{n+2}=3-\frac{6}{n+2}\in Z\)

\(\Rightarrow n+2=Ư\left(6\right)=\left\{3;6\right\}\Rightarrow n=\left\{1;4\right\}\)

13 tháng 2 2018

\(A=3-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}\)

\(A=3-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\right)\)

\(A=3-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\right)\)

\(A=3-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\)

\(A=3-\left(1-\frac{1}{8}\right)\)

\(A=3-\frac{5}{8}\)

\(A=\frac{19}{8}\)

2 tháng 8 2019

\(\left(-2\right).\left(-1\frac{1}{2}\right)\left(-1\frac{1}{3}\right).....\left(-1\frac{1}{2013}\right)\)

\(=\left(-2\right).\left(\frac{-3}{2}\right)\left(-\frac{4}{3}\right)......\left(\frac{-2014}{2013}\right)\)

\(=\frac{\left(-2\right).\left(-3\right).\left(-4\right)....\left(-2014\right)}{2.3.....2013}\)

\(=\frac{2.3.4....2014\left(\text{Vì có 2014 thừa số âm }\right)}{2.3....2013}\)

\(=\frac{\left(2.3.4....2013\right).2014}{2.3....2013}\)

\(=2014\)