tìm x,y sao cho \(x^{20}+\left(x+1\right)^{11}=2016^y\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy \(x,x+1\) luôn có 1 số chăn và 1 số lẻ
Do đó \(x^{20},\left(x+1\right)^{11}\) cũng luôn có 1 số chẵn và 1 số lẻ
\(\Rightarrow2016^y=x^{20}+\left(x+1\right)^{11}\) lẻ
Điều này xảy ra khi \(y=0\) , còn nếu \(y\ge1\) thì \(2016^y\) luôn chẵn ( mâu thuẫn )
Vậy y = 0
\(\Rightarrow x^{20}+\left(x+1\right)^{11}=2016^o=1\)
Nếu \(x=0\) thì đễ thấy thỏa mãn
Nếu \(x\ge1\) thì \(x^{20}+\left(x+1\right)^{11}>1\) ( vô lý )
Vậy \(\left(x,y\right)=\left(0,0\right)\)
Vế trái là tổng 2 số chẵn lẻ nên luôn là số lẻ \(\Rightarrow\) vế phải lẻ
\(\Rightarrow y=0\)
\(\Rightarrow x^{20}+\left(x+1\right)^{11}=1\Rightarrow x=0\)
Vậy \(\left(x;y\right)=\left(0;0\right)\)
vì x, x + 1 là hai số tự nhiên liên tiếp
Nếu x chẵn, x + 1 lẻ nên x20 chẵn và (x+1)11 lẻ
=> x20 + (x+1)11 lẻ => 2016y lẻ
2016y = 1 => y = 0
Do đó: \(2016\Rightarrow\)x20 + (x+1)11 = 1 => x = 0
Vậy x= 0, y = 0
Ta có (x + |x| + 2016)(y + |y| + 2016) > 2016 với mọi x, y nên không thể tính được P