tìm x
( x - 2 ) mũ 2 - ( x + 3 ) mũ 2 + ( x+ 4 ) ( x-4 ) =0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Thay m=3 vào (1), ta được:
\(x^2-4x+3=0\)
a=1; b=-4; c=3
Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)
Bài 2:
a) Thay m=0 vào (2), ta được:
\(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
hay x=1
b) Theo định lí Vi-et ta có:
x 1 + x 2 = m + 1 và x 1 . x 2 = m - 2
Do đó A = x 1 2 + x 2 2 - 6 x 1 x 2 = x 1 + x 2 2 - 8 x 1 x 2
= m + 1 2 - 8(m – 2) = m 2 + 2m + 1 – 8m + 16
= m 2 - 6m + 17 = m - 3 2 + 8 ≥ 8
Vậy giá trị nhỏ nhất của A bẳng 8 khi m – 3 = 0 hay m = 3.
\(\Delta'=\left(-2m\right)^2-\left(4m^2-2\right)\)
\(=4m^2-4m^2+2\)
\(=2>0\forall0\)
Theo Vi - ét:
\(\left\{{}\begin{matrix}x_1+x_2=4m\\x_1x_2=4m^2-2\end{matrix}\right.\)
\(x^2_1+4mx_2+4m^2-6=0\)
\(\Leftrightarrow x_1^2+\left(x_1+x_2\right)x_2+x_1x_2-4=0\)
\(\Leftrightarrow x_1^2+x_2^2+x_1x_2+x_1x_2-4=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^2=4\)
\(\Leftrightarrow\left(4m\right)^2=4\)
\(\Leftrightarrow\left|4m\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}4m=2\\4m=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{1}{2}\\m=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy với \(m=\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\) thì pt có 2 nghiệm x1,x2 thỏa mãn biểu thức ...
\(\left(x-2\right)^2-\left(x+3\right)^2+\left(x+4\right)\left(x-4\right)=0\\ < =>x^2-4x+4-x^2-6x-9+x^2-16=0\\ < =>x^2-10x-21=0\\ < =>\left(x^2-10x+25\right)-46=0\\ < =>\left(x-5\right)^2=46\\ < =>\left[{}\begin{matrix}x-5=\sqrt{46}\\x-5=-\sqrt{46}\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\sqrt{46}+5\\x=5-\sqrt{46}\end{matrix}\right.\)