Cho phép sử dụng kết quả các ý trước ở các ý sau, hãy chứng minh rằng a, √5 là số vô tỉ,
b, √30 là số vô tỉ,
c, 2√6 là số vô tỉ,
d, 11+√6 là số vô tỉ,
e, 3+5√6 là số vô tỉ,
f, √15+√2 là số vô tỉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử phản chứng √7 là số hữu tỉ ⇒ √7 có thể biểu diễn dưới dạng phân số tối giản m/n
√7= m/n
⇒ 7 = m²/n²
⇒ m² =7n²
⇒ m² chia hết cho n²
⇒ m chia hết cho n (vô lý vì m/n là phân số tối giản nên m không chia hết cho n)
Vậy giả sử phản chứng là sai. Suy ra √7 là số vô tỉ.
~ Mik ko có 2k5 nha , Hok tốt ~
#Gumball
Giả sử phản chứng √7 là số hữu tỉ ⇒ √7 có thể biểu diễn dưới dạng phân số tối giản m/n
√7 = m/n
⇒ 7 = m²/n²
⇒ m² = 7n²
⇒ m² chia hết cho n²
⇒ m chia hết cho n (vô lý vì m/n là phân số tối giản nên m không chia hết cho n)
Vậy giả sử phản chứng là sai. Suy ra √7 là số vô tỉ.
số vô tỉ: incommensurable number
số hữu tỉ: rational number
số hữu hạn: finite number
số vô hạn tuần hoàn: infinite number of circulating.
số nguyên : interger
số tự nhiên: natural number
số thực: real number
you're a life saver!Don't try Google translate...because it don't true!
vì tập hợp n có vô hạn phần tử mà sau dấu ,là các số thuộc tập hợp N nên đó là số vô tỉ
Trước hết ta chứng minh \(\frac{OA}{AM}+\frac{OB}{BN}+\frac{OC}{CP}=1\)
Thậy vậy \(\frac{OM}{AM}+\frac{ON}{BN}+\frac{ON}{CP}=\frac{S_{BOC}}{S_{ABC}}+\frac{S_{AOC}}{S_{ABC}}+\frac{S_{AOB}}{S_{ABC}}=1\)
Đặt \(\frac{OM}{AM}=x;\frac{ON}{BN}=y;\frac{OP}{CP}=z\Rightarrow x+y+z=1.\)
Khi đó \(a=\frac{OA}{OM}=\frac{AM-OM}{OM}=\frac{AM}{OM}-1=\frac{1}{x}-1\Rightarrow x=\frac{1}{a+1}\)
Tương tự \(\frac{OB}{ON}=b\Rightarrow y=\frac{1}{b+1};\frac{OC}{OP}=c\Rightarrow z=\frac{1}{c+1};\)
Vậy thì \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=1.\)
Nếu cả a, b, c đều nhỏ hơn 2 thì \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}>\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\) (Vô lý)
Vậy phải tồn tại một tỉ số không nhỏ hơn 2.
Nếu cả a, b, c đều lớn hơn 2 thì \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}< \frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\) (Vô lý)
Vậy phải tồn tại một tỉ số không lớn hơn 2.
Giả sử, a không phải là 1 số vô tỉ. Khi đó a là một số thập phân vô hạn tuần hoàn mà chu kì có n chữ số, số các chữ số đứng trước chu kì bằng k. Xét số N = 10^m với m là 1 số tự nhiên và \(m\ge n+k\). Trong số a, sau dấu phẩy, ta viết kế tiếp nhau các số tự nhiên kể từ 1, do đó số N cũng được viết ở một vị trí nào đó. Vì a là số thập phân vô hạn tuần hoàn và vì m là chữ số 0 đứng cạnh nhau ở vị trí nào đó trong số a \(\left(m\ge n+k\right)\)nên chu kì của số thập phân này chỉ gồm toàn chữ số 0, nghĩa là a là số thập phân hữu hạn. Điều này mâu thuẫn với đề bài. Vì vậy số a không thể là một số thập phân vô hạn tuần hoàn. Nó là một số thập phân vô hạn không tuần hoàn nghĩa là a là một số vô tỉ.
#)Giải :
Giả sử a là số vô tỉ với chu kì = k
Xét A = 10m với m là số tự nhiên
Vì số a sau dấu phẩy là các số tự nhiên liên tiếp viết từ 1
=> Số A cũng sẽ nằm ở một vị trí nào đó
Vì a là lũy thừa của 10m hay m số 0
=> a là số hữu hạn (mâu thuẫn với đề bài)
=> a là số thập phân vô hạn không tuần hoàn hay số vô tỉ (đpcm)
1. Ta chọn $x=3k;y=4k;z=5k$ với $k$ là số nguyên dương.
Khi này $x^2+y^2=25k^2 =z^2$. Tức có vô hạn nghiệm $(x;y;z)=(3k;4k;5k)$ với $k$ là số nguyên dương thỏa mãn
* Giả sử 5 2 là số hữu tỉ a, nghĩa là: 5 2 = a
Suy ra: 2 = a / 5 hay 2 là số hữu tỉ.
Điều này vô lí vì 2 là số vô tỉ.
Vậy 5 2 là số vô tỉ.
* Giả sử 3 + 2 là số hữu tỉ b, nghĩa là:
3 + 2 = b
Suy ra: 2 = b - 3 hay 2 là số hữu tỉ.
Điều này vô lí vì 2 là số vô tỉ.
Vậy 3 + 2 là số vô tỉ.