K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8

\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+...+\dfrac{19}{9^2.10^2}\)

\(\dfrac{3}{1.4.}+\dfrac{5}{4.9}+...+\dfrac{19}{81.100}\)

\(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+...+\dfrac{1}{81}+\dfrac{1}{100}\)

\(1-\dfrac{1}{100}< 1\) (đpcm)

--------------------------------

Cho các số: a;b;c thuộc `N`; `c,b` khác `0` ta luôn có:

Nếu: `c-b = a` thì: 

\(\dfrac{a}{b.c}=\dfrac{1}{b}-\dfrac{1}{c}\)

23 tháng 6 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

31 tháng 12 2018

BĐT Nesbitt  nhé ko phải Nesbit đâu .V
Bđt đấy đây: Cho a,b,c dương

CMR: \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\)

Giải

Ta có: \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)

      \(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}-3\)

       \(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)-3\)

       \(=\frac{1}{2}.\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)-3\)

Áp dụng bđt Cô-si cho 3 số dương được

\(\frac{1}{2}\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)-3\)

            \(\ge\frac{1}{2}.3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}.3.\sqrt[3]{\frac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}-3\)

                 \(=\frac{1}{2}.9.\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}-3\)

                  \(=\frac{9}{2}-3\)

                   \(=\frac{3}{2}\)

Dấu "='' xảy ra <=> a=b=c

Vậy ...........

31 tháng 12 2018

BĐT Nesbit: Với a,b,c dương:

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

\(BĐT\Leftrightarrow\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)\ge\frac{9}{2}\)

\(\Leftrightarrow2\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge9\)

\(\Leftrightarrow2\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge9\)

Dùng bất đẳng thức cô si hai lần vào vế trái sẽ có điều cần chứng minh.

9 tháng 3 2017

Vì a ≥ 0 nên √a xác định, b  ≥  0 nên  b  xác định

Ta có:  a - b 2 ≥  0 ⇔ a - 2 a b  + b  ≥  0

⇒ a + b  ≥  2 a b  ⇔  a + b 2 ≥ a b

Dấu đẳng thức xảy ra khi a = b.

11 tháng 2 2021

có ?????????

Ta có BĐT cô si:\(a+b\ge2\sqrt{ab}\)(1)

Mặt khác a,b là các số âm nên a+b<0 mà \(2\sqrt{ab}>0\)

\(\Rightarrow a+b< 2\sqrt{ab}\left(2\right)\)

Từ (1) và (2) suy ra vô lý

vậy...............

AH
Akai Haruma
Giáo viên
23 tháng 1 2022

Lời giải:

Bổ sung điều kiện $a,b$ là các số dương. Áp dụng BĐT Cô-si ta có:

$a+b\geq 2\sqrt{ab}$

$\frac{1}{a}+\frac{1}{b}\geq 2\sqrt{\frac{1}{ab}}$

$\Rightarrow (a+b)(\frac{1}{a}+\frac{1}{b})\geq 2\sqrt{ab}.2\sqrt{\frac{1}{ab}}=4$

Ta có đpcm 

Dấu "=" xảy ra khi $a=b$

8 tháng 5 2021

Ta có : \(\left(a-b\right)^2\ge0\)

\(\Rightarrow a^2+b^2+2ab\ge4ab\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

Có : \(a,b\ge0\)

\(\Rightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\) ( đpcm )

Vậy ...