Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (A; AH) kẻ tiếp tuyến BD, CE với đường tròn ( D,E là các tiếp điểm khác H) chứng minh:
a/ Ba điểm D, A, E thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:\(BC=\sqrt{4^2+3^2}=5\left(cm\right)\)
AH=4*3/5=2,4cm
b: ΔCAD cân tại C
mà CH là đường cao
nên CH là phân giác của góc ACD
Xét ΔCAB và ΔCDB có
CA=CD
góc ACB=góc DCB
CB chung
Do dó: ΔCAB=ΔCDB
=>góc CDB=90 độ
=>BD là tiếp tuyến của (C)
2: Xét ΔCAD và ΔCEA có
góc C chung
góc CAD=góc CEA
=>ΔCAD đồng dạng với ΔCEA
=>CA/CE=CD/CA
=>CA^2=CE*CD
Xét tam giác vuông AHC và tam giác vuông AED có:
AE = AH
\(\widehat{HAC}=\widehat{EAD}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AHC=\Delta AED\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow AC=AD\)
Xét tam giác BDC có BA là đường cao đồng thời trung tuyến nên nó là tam giác cân. Vậy thì BA cũng là tia phân giác góc B.
Gọi H' là chân đường vuông góc hạ từ A xuống BD.
Ta thấy ngay \(\Delta H'BA=\Delta HBA\) (Cạnh huyền góc nhọn)
Vậy thì AH' = AH
Suy ra BD là tiếp tuyến của đường tròn tâm A, bán kính AH.
a: Ta có: ΔCAD cân tại C
mà CH là đường cao
nên CH là phân giác của góc ACD
Xét ΔCAB và ΔCDB có
CA=CD
\(\widehat{ACB}=\widehat{DCB}\)
CB chung
Do đó: ΔCAB=ΔCDB
=>\(\widehat{CAB}=\widehat{CDB}\)
mà \(\widehat{CAB}=90^0\)
nên \(\widehat{CDB}=90^0\)
=>BD là tiếp tuyến của (C)
b: Xét (C) có
PA,PM là các tiếp tuyến
Do đó: PA=PM và CP là phân giác của góc ACM
Vì CP là phân giác của góc ACM
nên \(\widehat{ACM}=2\cdot\widehat{PCM}\)
Xét (C) có
QM,QD là các tiếp tuyến
Do đó: CQ là phân giác của góc MCD
=>\(\widehat{MCD}=2\cdot\widehat{MCQ}\)
Ta có: \(\widehat{MCD}+\widehat{MCA}=\widehat{DCA}\)
=>\(\widehat{DCA}=2\cdot\left(\widehat{MCQ}+\widehat{MCP}\right)\)
=>\(\widehat{DCA}=2\cdot\widehat{PCQ}\)
=>\(\widehat{PCQ}=\dfrac{sđ\stackrel\frown{AD}}{2}\left(1\right)\)
Xét ΔBEF có
BC là đường cao
BC là đường phân giác
Do đó: ΔBEF cân tại B
=>BE=BF
Xét ΔBEF có \(\dfrac{BA}{BE}=\dfrac{BD}{BF}\)
nên AD//EF
=>\(\widehat{BAD}=\widehat{BEF}\)
mà \(\widehat{BAD}=\dfrac{1}{2}\cdot sđ\stackrel\frown{AD}\)(góc tạo bởi tiếp tuyến BA và dây cung AD)
nên \(\widehat{BEF}=\dfrac{1}{2}\cdot sđ\stackrel\frown{AD}\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{BEF}=\widehat{PCQ}\)
hình bạn tự kẻ nha
a> Xét tam giác ADE và tam giác AHB có : góc DAE = HAB(đối đỉnh); góc ADE = góc AHB = 90 độ; AD = AH = bán kính==> tg ADE = AHB (c.g.v_g.n.k)
b> vì tg ADE = AHB ==> AE = AB ==> A là trung điểm của BE (1)
xét tg CBE ta thấy CA vuông góc với AB ==> CA là đường cao (2)
từ (1) và (2) ==> tg CBE cân tại C
c> vì tg CBE cân tại C ==> CA vừa là đường cao vừa là tia pg xuất phát từ đỉnh C ==> góc ACH = ACI
xét tg ACH và tg ACI có: góc AHC = AIC = 90 độ; AC là cạnh chung; góc ACH = ACI(cmt) ==> tg ACH = ACI (c.h_g.n)
=> AH=AI=bán kính (3)
mặt khác AI vuông góc với CE (4)
từ (3) và (4) ==> CE là tiếp tuyến ( khoảng cách từ tâm đến đường thẳng bằng bán kính)