K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7

`-1/3<=x/3<=-1/6`

`=>-2/6<=2x/3<=-1/6`

`=>-2<=2x<=-1`

`=>-2/2<=x<=-1/2`

`=>-1<=x<=-1/2` 

31 tháng 7

\(\dfrac{-1}{2}< \dfrac{x}{3}< \dfrac{-1}{6}\)

`=>` \(\dfrac{-3}{6}< \dfrac{2x}{6}< \dfrac{-1}{6}\)

`=> -3 < 2x < -1`

Mà `2x` là số nguyên

`=> 2x = -2`

`=> x = -1`

Vậy `x = -1`

NV
16 tháng 11 2021

\(\dfrac{\left|x-2\right|}{\sqrt{x-1}}=\dfrac{x-2}{\sqrt{x-1}}\Leftrightarrow\left\{{}\begin{matrix}x-2\ge0\\x-1>0\end{matrix}\right.\)

\(\Rightarrow x\ge2\)

\(S=\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}=\sqrt{\left(2-\sqrt{3}\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(=2-\sqrt{3}-\left(2+\sqrt{3}\right)=-2\sqrt{3}\)

2 tháng 1 2021

3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).

Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).

29 tháng 7 2017

Thay y= 1-x ta được

\(c=x^2+y^2+xy=x^2+\left(1-x\right)^2+x\left(1-x\right)=x^2-x+1\)

\(=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Đẳng thức xảy ra  \(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y=1-x\end{cases}}\)  \(\Leftrightarrow x=y=\frac{1}{2}\)

30 tháng 4 2018

Đặt \(x=1-y\)

\(C=x^2+y^2+xy=\left(1-y\right)^2+y^2+y\left(1-y\right)\)

\(\Leftrightarrow C=1-2y+y^2+y^2+y-y^2=y^2-y+1\)

\(\Leftrightarrow\left(y^2-2.\frac{1}{2}y+\frac{1}{4}\right)+\frac{3}{4}\Leftrightarrow\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy min C là 3/4 khi y=1/2 và x =1- 1/2= 1/2 hay x=y= 1/2

15 tháng 11 2017

27 tháng 4 2019

9 tháng 2 2019

\(\Rightarrow x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)

\(\Rightarrow1\ge2xy\)

\(\Rightarrow\frac{1}{2}\ge xy\)

Có \(x+y\ge2\sqrt{xy}\ge2\sqrt{\frac{1}{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)

Vậy \(Min_{x+y}=\sqrt{2}\)

Làm tương tự với max

9 tháng 2 2019

Thêm đk: x,y>0

Tìm max:

Áp dụng BĐT bunhiacopxki ta có:

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow2\ge\left(x+y\right)^2\)

\(\Leftrightarrow\sqrt{2}\ge x+y\)

Dấu " = " xảy ra <=> x=y

KL:...............................

26 tháng 6 2017

Ta có (x + y +z)² ≥ 0 suy ra x² + y² + z² + 2 ( xy + yz + zx) ≥ 0 

1 + 2 ( xy + yz + zx) ≥ 0 

xy + yz + zx ≥ - 1 / 2 

Thế thì min (xy + yz + zx) = - 1 / 2 khi x+ y + z = 0 và x² + y² + z² = 1 ( ♥ ) 

Lại có I xz I = I x I I z I ≤ 1 / 2 ( x² + z² ) = 1 / 2 ( 1 - y² ) ≤ 1 / 2 

Thế thì min ( xz ) = - 1 / 2 khi x = - z và x² + y² + z² = 1 và y = 0 ( ♣ ) 

Từ ( ♥ ) và ( ♣ ) cho ta 

min ( xy + yz + 2.zx ) = - 1 / 2 - 1 / 2 = - 1 

khi x = √2 / 2 ; y = 0 ; z = - √2 / 2 chẳng hạn 

P/C bạn dựa vào đk x + y + z = 0 ; x² + y² + z² = 1;y = 0 ; x = - z

Image result for hình ảnh động

23 tháng 12 2021

\(5+x=2^3-1\\ 5+x=8-1\\ 5+x=7\\ x=2\)

22 tháng 9 2015

mình ko hiểu

4 tháng 2 2018

Phương trình đã cho tương đương với

2 sin 3 x + sin 2 x = 0 ⇔ sin x = 0 sin x = - 1 2

Do điều kiện  sin x < 1 2  nên sinx = 0 nên  x = kπ ; k ∈ ℤ

Đáp án A