Cho tam giác ABC,trên tia đối tia AB lấy D sao cho AD=AC,trên tia đối của AC lấy E sao cho AE=AB.Chứng minh: a.BC=DE b.tia phân giác của BAE vuông góc với CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ IM\(\perp\)AE
Xét ΔADI vuông tại D và ΔAMI vuông tại M có
AI chung
\(\widehat{DAI}=\widehat{MAI}\)
Do đó: ΔADI=ΔAMI
=>AD=AM
mà AD=AB
nên AM=AB
Xét ΔAMK và ΔABK có
AM=AB
\(\widehat{MAK}=\widehat{BAK}\)
AK chung
Do đó: ΔAMK=ΔABK
=>\(\widehat{AMK}=\widehat{ABK}=90^0\)
\(\widehat{IMK}=\widehat{IMA}+\widehat{KMA}\)
\(=90^0+90^0=180^0\)
=>I,M,K thẳng hàng
=>IK\(\perp\)AE
Gọi F là gđ của IK và AE. Cm IA là phân giác của góc DIF. Qua A kẻ đt vuông góc với AK, cắt CD tại M.
Bạn cm các cặp tg bằng nhau : tg ADM = tgABK => tg AMI = tg AKI => đpcm
Kẻ MK⊥AE tại K
Xét ΔADM vuông tại D và ΔAKM vuông tại K có
AM chung
\(\widehat{DAM}=\widehat{KAM}\)
Do đó: ΔADM=ΔAKM
=>AD=AK
mà AD=AB
nên AK=AB
Xét ΔAKN và ΔABN có
AK=AB
\(\widehat{KAN}=\widehat{BAN}\)
AN chung
Do đó: ΔAKN=ΔABN
=>\(\widehat{AKN}=\widehat{ABN}=90^0\)
=>NK\(\perp\)AE
mà MK\(\perp\)AE
và MK,NK có điểm chung là K
nên MN\(\perp\)AE
Tg ABD =tg EBD ( cm trên) •> AD=DE( 2 cạnh tương ứng) (1)
Tg ADF vg tại A=> Góc A lớn nhất=> FD lớn nhất( Qh giữa góc và cạnh đối diện trong 1 tam giác)=> AD<FD(2)
Từ 1 và 2 => ED<FD
a) Tam giác ABC vuông tại A => AB2+AC2=BC2 ( theo định lý Pitago)
=> 62+Ac2=102 =>AC2=100-36=64=> AC= 8
Vì D nằm trên AC=> AD+DC= AC=> 3+DC=8=> DC=5(cm)
Xét `ΔEAD` và `ΔBAC` có:
`EA = AB` (giả thiết)
\(\widehat{EAD}=\widehat{BAC}\) (2 góc đối đỉnh)
`AD = AC` (giả thiết)
`=> ΔEAD = ΔBAC` (cạnh - góc - cạnh)
`=> DE = BC` (2 cạnh tương ứng)
b) Gọi `I` là giao điểm của phân giác \(\widehat{BAE}\) và BE
Xét `ΔAEB` cân tại `A` có:
\(\widehat{AEB}=\dfrac{180^o-\widehat{BAE}}{2}\)
AI là phân giác của \(\widehat{EAB}\) đồng thời là đường cao `=> AI` \(\perp\) `EB (1)`
Xét `ΔDAC` cân tại `A` có:
\(\widehat{ACD}=\dfrac{180^o-\widehat{CAD}}{2}\)
Mà \(\widehat{CAD}=\widehat{BAE}\) (2 góc đối đỉnh)
=> \(\widehat{AEB}=\widehat{ACD}\)
Và `2` góc này so le trong
`=> EB` // `DC (2)`
Từ `(1)` và `(2) => AI` \(\perp\) `DC`