tìm max:
4-x^2+2x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(sin^24x=t\left(t\in\left[0;1\right]\right)\)
\(y=1-8sin^22x.cos^22x+2sin^42x\)
\(=1-2sin^24x+2sin^42x\)
\(\Rightarrow y=f\left(t\right)=1-2t+2t^2\)
\(y_{min}=min\left\{f\left(0\right);f\left(1\right);f\left(\dfrac{1}{2}\right)\right\}=\dfrac{1}{2}\)
\(y_{max}=max\left\{f\left(0\right);f\left(1\right);f\left(\dfrac{1}{2}\right)\right\}=1\)
Tham khảo:
Đỉnh S có tọa độ: \({x_S} = \dfrac{{ - b}}{{2a}} = \dfrac{{ - 2}}{{2.1}} = - 1;\,{y_S} = {\left( { - 1} \right)^2} + 2.( - 1) + 3 = 2.\)
Hay \(S\left( { - 1;2} \right).\)
Vì hàm số bậc hai có \(a = 1 > 0\) nên ta có bảng biến thiên sau:
Hàm số đạt giá trị nhỏ nhất bằng \(2\).
Ta có:
+Vẽ đường thẳng y= x với x≥3 đi qua hai điểm O(0; 0) và A(1;1) và lấy phần đường thẳng bên phải của đường thẳng x= 3.
+Vẽ đường thẳng y=5x-12 với 2≤ x≤ 3 đi qua hai điểm B(3;3) và C( 2; -2) và lấy phần đường thẳng nằm giữa của hai đường thẳng x=2; x=3.
+Vẽ đường thẳng y= -x đi qua hai điểm O và D( -1; -1) và lấy phần đường thẳng bên trái của đường thẳng x= 2
+ Dựa vào đồ thị hàm số ta có:
Chọn C.
Ta có y = x 2 + 2 x + a - 4 = x + 1 2 + a - 5
Đặt u = x + 1 2 khi đó ∀ x ∈ - 2 ; 1 thì u ∈ 0 ; 4
Ta được hàm số f u = u + a - 5
Khi đó
M a x x ∈ - 2 ; 1 y = M a x x ∈ 0 ; 4 f u = M a x f 0 , f 4 = M a x a - 5 ; a - 1
Trường hợp 1:
a - 5 ≤ a - 1 ⇔ a ≤ 3 ⇒ M a x x ∈ 0 ; 4 f u = 5 - a ≥ 2 ⇔ a = 3
Trường hợp 2:
a - 5 ≤ a - 1 ⇔ a ≥ 3 ⇒ M a x x ∈ 0 ; 4 f u = a - 1 ≥ 2 ⇔ a = 3
Vậy giá trị nhỏ nhất của M a x x ∈ - 2 ; 1 y = 2 ⇔ a = 3
Đáp án A
Lời giải:
$x^2-2x-3=x(x+3)-5(x+3)+12=(x+3)(x-5)+12$
Vì $x\in [-3;4]$ nên $x+3\geq 0; x-5< 0$
$\Rightarrow x^2-2x-3=(x+3)(x-5)+12\leq 12$
Vậy GTLN của hàm số là $12$ khi $x=-3$
y = x 2 + 2 x + m - 4 = ( x + 1 ) 2 + m - 5
Ta có ( x + 1 ) 2 + m - 5 ∈ m - 5 ; m - 1
Giá trị lớn nhất của hàm số y = x 2 + 2 x + m - 4 trên đoạn[ -2; 1] đạt giá trị nhỏ nhất khi
m - 5 < 0 m - 1 > 0 5 - m = m - 1 ⇔ m = 3
Chọn B.
\(4-x^2+2x\\ =\left(-x^2+2x-1\right)+5\\ =-\left(x^2-2x+1\right)+5\\ =-\left(x-1\right)^2+5\)
Ta có: \(-\left(x-1\right)^2\le0\forall x\)
\(=>-\left(x-1\right)^2+5\le5\forall x\)
Dấu "=" xảy ra: `x-1=0<=>x=1`
Vậy: ...