106-(x+7)=9 45-(x+10)=31
156-(x+61)=82 126-(x+32)=86
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0;\forall x\) nên BPT tương đương:
\(-3\left(x^2+x+1\right)\le x^2-3x-1\le3\left(x^2+x+1\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x-1\ge-3x^2-3x-3\\x^2-3x-1\le3x^2+3x+3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x^2\ge-2\left(luôn-đúng\right)\\2x^2+6x+4\ge0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\ge-1\\x\le-2\end{matrix}\right.\)
a) PT bậc nhất một ẩn là: x-2=0; 4-0,2x=0
b) Giải:
x-2=0 (*)
⟺ x=-2
Vậy tập nghiệm của pt (*) là S={-2}
4-0,2x=0 (**)
⟺-0,2x=-4
⟺x=-4/-0,2=20
Vậy tập nghiệm của pt (**) là S={20}
\(\frac{-3x+1}{2x+1}+2\le0\)
\(\frac{-3x+1+4x+2}{2x+1}\le0\)
\(\frac{x+3}{2x+1}\le0\)
Lập bảng xet dấu, chú ý các mốc x = -3, x = -1/2
Nghiệm bpt là \(-3\le x<-\frac{1}{2}\)
Ô vuông thứ 2: Một phương trình bậc nhất một ẩn luôn có một nghiệm duy nhất.
(Bạn cần lưu ý vì đây là phương trình bậc nhất một ẩn nên a ≠ 0, do đó phương trình luôn có một nghiệm duy nhất. Không có trường hợp a = 0 nhé.)
y = 0 có phải là phương trình bậc nhất 1 ẩn ( khoông)
0.x + 5 = 0 có phải là phương trình bậc nhất 1 ẩn( phải)
-t - 2 = 0 có phải là phương trình bậc nhất 1 ẩn( không)
`#3107.101107`
\(106-\left(x+7\right)=9\\ \Rightarrow x+7=106-9\\ \Rightarrow x+7=97\\ \Rightarrow x=97-7\\ \Rightarrow x=90\)
Vậy, `x = 90`
___
\(45-\left(x+10\right)=31\\ \Rightarrow x+10=45-31\\ \Rightarrow x+10=14\\ \Rightarrow x=14-10\\ \Rightarrow x=4\)
Vậy, `x = 4`
___
\(156-\left(x+61\right)=82\\ \Rightarrow x+61=156-82\\ \Rightarrow x+61=74\\ \Rightarrow x=74-61\\ \Rightarrow x=13\)
Vậy, `x = 13`
___
\(126-\left(x+32\right)=86\\ \Rightarrow x+32=126-86\\ \Rightarrow x+32=40\\ \Rightarrow x=40-32\\ \Rightarrow x=8\)
Vậy, `x = 8.`