Giải bài toán bằng cách lập hpt:
Tìm 2 số tự nhiên có 2 chữ số. Biết tổng chữ số hàng đơn vị và 2 lần chữ số hàng chục bằng 17. Nếu đổi chỗ 2 chữ số thì được số mới lớn hơn số ban đầu là 45 đơn vị.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số đó là số có dạng: \(\overline{ab}\left(10a+b\right)\)
ĐK: \(a,b\in N,1\le a\le9;0\le b\le9\)
Tổng chữ số hàng đơn vị và 2 lần hàng chục là 17 nên ta có:
\(2a+b=17\left(1\right)\)
Nếu đổi chỗ 2 chữ số thì được số mới hơn số cũ 45 đơn vị ta có:
\(\overline{ba}-\overline{ab}=45\\ < =>10b+a-10a-b=45\\ < =>9b-9a=45\\ < =>b-a=5\left(2\right)\)
Từ (1) và (2) ta có hpt: \(\left\{{}\begin{matrix}2a+b=17\\b-a=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=9\end{matrix}\right.\)
Số cần tìm là: 49