So sánh\(\frac{203.204-1}{203.204}\) và \(\frac{204.205-1}{204.205}\)
Gấp lắm ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{A = }\frac{\text{-1}}{\text{2011}}-\frac{\text{3}}{\text{11}^2}-\frac{\text{5}}{\text{11}^2.\text{11}}-\frac{\text{7}}{\text{11}^2.\text{11}^2}=\text{ }\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(3-\frac{\text{5}}{\text{11}}-\frac{\text{7}}{\text{11}^2}\right)\)
\(\text{B = }\frac{\text{-1}}{\text{2011}}-\frac{7}{\text{11}^2}-\frac{5}{\text{11}^2.\text{11}}-\frac{3}{\text{11}^2.\text{11}^2}=\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(7-\frac{5}{\text{11}}-\frac{3}{\text{11}^2}\right)\)
\(\text{Vì }3-\frac{\text{5}}{\text{11}}-\frac{\text{7}}{\text{11}^2}< 7-\frac{5}{\text{11}}-\frac{3}{\text{11}^2}\)
\(\Rightarrow\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(3-\frac{\text{5}}{\text{11}}-\frac{\text{7}}{\text{11}^2}\right)>\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(7-\frac{5}{\text{11}}-\frac{3}{\text{11}^2}\right)\)
=> A > B
Vậy A > B
\(A=\frac{1}{32}+\frac{1}{33}+\frac{1}{34}+...+\frac{1}{90}\)
Tổng trên có số số hạng là: \(\left(90-32\right)\div1+1=59\)
\(\frac{1}{32}+\frac{1}{33}+\frac{1}{34}+...+\frac{1}{90}\)
\(>\frac{1}{45}+\frac{1}{90}+\frac{1}{90}+...+\frac{1}{90}\)
\(=\left(\frac{1}{90}+\frac{1}{90}\right)+\frac{1}{90}+\frac{1}{90}+...+\frac{1}{90}\)
\(=\frac{60}{90}=\frac{2}{3}\)
\(=\frac{2\left(\sqrt{3}-1\right)}{2+\sqrt{4+2\sqrt{3}}}+\frac{2\left(\sqrt{3}+1\right)}{2-\sqrt{4-2\sqrt{3}}}=\frac{2\left(\sqrt{3}-1\right)}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\frac{2\left(\sqrt{3}+1\right)}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\frac{2\left(\sqrt{3}-1\right)}{2+\sqrt{3}+1}+\frac{2\left(\sqrt{3}+1\right)}{2-\sqrt{3}+1}=\frac{2\left(\sqrt{3}-1\right)}{3+\sqrt{3}}+\frac{2\left(\sqrt{3}+1\right)}{3-\sqrt{3}}\)
\(=\frac{2\left(\sqrt{3}-1\right)\left(3-\sqrt{3}\right)+2\left(\sqrt{3}+1\right)\left(3+\sqrt{3}\right)}{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)}=\frac{16\sqrt{3}}{6}=\frac{8\sqrt{3}}{3}\)
\(M=\frac{2018^{2018}+1}{2019^{2019}+1}\)
\(\Leftrightarrow2M=1+\frac{2017}{2018^{2019}+1}\)
\(N=\frac{2018^{2019}-2}{2018^{2020}-2}\)
\(\Leftrightarrow2N=1-\frac{4034}{2018^{2020}-2}\)
Nhận thấy : \(1+\frac{2017}{2018^{2019}+1}>1-\frac{4034}{2018^{2020}-2}\Leftrightarrow2M>2N\Leftrightarrow M>N\)
Từ đề bài, ta suy ra:
So sánh hai biểu thức
\(M=\left(2018^{2018}+1\right)\cdot\left(2018^{2020}-2\right)\)(1)
\(N=\left(2018^{2019}-2\right)\cdot\left(2018^{2019}+1\right)\)(2)
Xét biểu thức M và N, ta suy ra:
\(M=\left(2018^{2019}-2017\right)\cdot\left(2019^{2019}+2016\right)\)
\(N=\left(2018^{2019}-2017\right)\cdot\left(2018^{2018}-2016\right)\)
Nhận thấy (20192019+2016)>(20182018-2016) nên M>N
Vậy M>N.
P/s:Mình đây không phải top 10 tuần nên bài có thể sai sót, mong bạn tham khảo:)))
b) so sánh qua phân số trung gian \(\frac{h}{h+2}\)
ta có \(\frac{h+1}{h+2}>\frac{h}{h+2}^{\left(1\right)}\)
ta lại có \(\frac{h}{h+2}>\frac{h}{h+3}^{\left(2\right)}\)
từ (1) và (2)
\(\Rightarrow\frac{h+1}{h+2}>\frac{h}{h+3}\)
a) so sánh qua phân số trung gian \(\frac{200}{408}\)
ta có \(\frac{203}{408}>\frac{200}{408}^{\left(1\right)}\)
ta lại có \(\frac{200}{408}>\frac{200}{449}^{\left(2\right)}\)
từ (1) và (2)
\(\Rightarrow\frac{203}{408}>\frac{200}{449}\)
ta có: \(M=\frac{2012x2014+2015}{2014+2013x2013}\)
\(M=\frac{2012x2013+(2012+2015)}{(2014+2013)+2013x2012}\)
\(M=\frac{2012x2013+4027}{4027+2012x2013}=1\)
=> M =1
Thật à trieu dang
\(\cdot\frac{203.204-1}{203.204}=\frac{203.204}{203.204}-\frac{1}{203.204}=1-\frac{1}{203.204}\)
\(\cdot\frac{204.205-1}{204.205}=\frac{204.205}{204.205}-\frac{1}{204.205}=1-\frac{1}{204.205}\)
Ta có: \(203.204< 204.205\)
\(\Rightarrow\frac{1}{203.204}>\frac{1}{204.205}\)
\(\Rightarrow1-\frac{1}{203.204}< 1-\frac{1}{204.205}\)
\(\Rightarrow\frac{203.204-1}{203.204}< \frac{204.205-1}{204.205}\)