K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét tứ giác AEDF có 

AE//DF

DE//AF

Do đó: AEDF là hình bình hành

Suy ra: Hai đường chéo AD và EF cắt nhau tại trung điểm của mỗi đường

mà O là trung điểm của FE

nên O là trung điểm của AD

=>Khi D di chuyển trên BC thì O là trung điểm của AD

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

Lời giải:

$DF\parallel AE, DE\parallel AF$ nên $AEDF$ là hình bình hành

$P_{AEDF}=AE+DF+DE+AF$

Lại có:

$DF\parallel AC$ nên áp dụng định lý Talet:

$\frac{DF}{AC}=\frac{BF}{AB}$. Mà $AB=AC$ nên $DF=BF$

$DE\parallel AB$ nên áp dụng định lý Talet:

$\frac{CE}{AC}=\frac{DE}{AB}$ mà $AB=AC$ nên $CE=DE$

Do đó:

$P_{AEDF}=AE+BF+CE+AF=(AE+CE)+(BF+AF)=AC+AB=4+4=8$ (cm)

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

Hình vẽ:

A B C D E F

Đề sai rồi nhé \(E\varepsilon AB\)! mới đúng