K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 11 2021

ĐKXĐ: \(\left[{}\begin{matrix}x\ge0\\x\le-3\end{matrix}\right.\)

\(\left(x+5\right)\left(2-x\right)=3\sqrt{x^2+3x}\)

\(\Leftrightarrow-x^2-3x+10=3\sqrt{x^2+3x}\)

\(\Leftrightarrow x^2+3x+3\sqrt{x^2+3x}-10=0\)

Đặt \(\sqrt{x^2+3x}=t\ge0\)

\(\Rightarrow t^2+3t-10=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-5\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+3x}=2\)

\(\Leftrightarrow x^2+3x=4\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)

1 tháng 8 2018

1/

Ta có:  \(\left(1+\sqrt{15}\right)^2\)= 1 + 15 + \(2\sqrt{15}\)= 16 + \(2\sqrt{15}\)

              \(\sqrt{24}^2\)= 24 = 16 + 8

Vì:     \(\sqrt{15}^2\)= 15 < 16 =\(4^2\)

Nên:   \(\sqrt{15}< 4\)

=>       \(2\sqrt{15}< 8\)

=>       \(16+2\sqrt{15}< 24\)

=>      \(\left(1+\sqrt{15}\right)^2< \sqrt{24}^2\)

Vậy     \(1+\sqrt{15}< \sqrt{24}\)

2/

b/    \(3x-7\sqrt{x}=20\)\(\left(x\ge0\right)\)

<=> \(3x-7\sqrt{x}-20=0\)

<=> \(3x-12\sqrt{x}+5\sqrt{x}-20=0\)

<=> \(3\sqrt{x}\left(\sqrt{x}-4\right)+5\left(\sqrt{x}-4\right)=0\)

<=> \(\left(\sqrt{x}-4\right)\left(3\sqrt{x}+5\right)=0\)

<=> \(\sqrt{x}-4=0\)hoặc \(3\sqrt{x}+5=0\)

<=>   \(\sqrt{x}=4\)hoặc \(3\sqrt{x}=-5\)(vô nghiệm)

<=>   \(x=16\)

Vậy S=\(\left\{16\right\}\)

c/    \(1+\sqrt{3x}>3\)

<=> \(\sqrt{3x}>2\)

<=>   \(3x>4\)

<=>  \(x>\frac{4}{3}\)

d/      \(x^2-x\sqrt{x}-5x-\sqrt{x}-6=0\)(\(x\ge0\))

<=>   \(\left(x^2-5x-6\right)-\left(x\sqrt{x}+\sqrt{x}\right)=0\)

<=>   \(\left(x^2-6x+x-6\right)-\left(x\sqrt{x}+\sqrt{x}\right)=0\)

<=>    \([x\left(x-6\right)+\left(x-6\right)]-\sqrt{x}\left(x+1\right)=0\)

<=>   \(\left(x-6\right)\left(x+1\right)-\sqrt{x}\left(x+1\right)=0\)

<=>   \(\left(x+1\right)\left(x-6-\sqrt{x}\right)=0\)

<=>    \(\left(x+1\right)\left(x-3\sqrt{x}+2\sqrt{x}-6\right)=0\) 

<=>    \(\left(x+1\right)[\sqrt{x}\left(\sqrt{x}-3\right)+2\left(\sqrt{x}-3\right)]=0\)

<=>    \(\left(x+1\right)\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)=0\)

<=>     \(x+1=0\)  hoặc \(\sqrt{x}-3=0\)hoặc \(\sqrt{x}+2=0\)

<=>     \(x=-1\)(loại)  hoặc \(x=9\)hoặc \(\sqrt{x}=-2\)(vô nghiệm)

Vậy S={  9 }

22 tháng 10 2017

Dễ thấy, nếu x < 0:

\(VT=\sqrt{x^2+5}+3x< 3x+\sqrt{x^2+5}\)

Phương trình vô nghiệm. Vậy: \(x\ge0\)

Phương trình ban đầu tương đương:

\(\sqrt{x^2+12}+5-3x\sqrt{x^2+5}=0\)

\(\Leftrightarrow\frac{x^2-4}{\sqrt{x^2+12}+5}-\frac{x^2-4}{3x+\sqrt{x^2+5}}+3.x-2=0\)

\(\Leftrightarrow x-2.\frac{x+2}{\sqrt{x^2+12}+5}-\frac{x+2}{3x.\sqrt{x^2+5}}+3=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\\frac{x+2}{\sqrt{x^2+12}+5}-\frac{x+2}{3x+\sqrt{x^2+5}}+3=0\end{cases}}\)

Ta có:

\(2\Leftrightarrow x+2.\frac{1}{\sqrt{x^2+12}+5}-\frac{1}{3x+\sqrt{x^2+5}}+3=0\)

\(\Leftrightarrow x+2.\frac{\sqrt{x^2+12}-3x+\sqrt{x^2+5}}{\sqrt{x^2+12}+5.3x\sqrt{x^2+5}}=0\)

Do x > 0 nên \(VT>0=VF\). Do đó phương trình 2 vô nghiệm

Vậy: Phương trình ban đầu có nghiệm duy nhất \(x=2\)

P/s: Bn tham khảo nhé

3 tháng 10 2021

\(ĐK:x^2-3x+5\ge0\)

Đặt \(\sqrt{x^2-3x+5}=a\ge0\)

\(PT\Leftrightarrow a+a^2-5=7\\ \Leftrightarrow a^2+a-12=0\\ \Leftrightarrow\left(a-3\right)\left(a+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=3\left(tm\right)\\a=-4\left(ktm\right)\end{matrix}\right.\\ \Leftrightarrow\sqrt{x^2-3x+5}=3\\ \Leftrightarrow x^2-3x+5=9\\ \Leftrightarrow x^2-3x-4=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)

3 tháng 10 2021

đặt \(x^2-3x=y\)

\(pt\Leftrightarrow\sqrt{y+5}+y=7\\ \Leftrightarrow\sqrt{y+5}=7-y\\ \Leftrightarrow\left\{{}\begin{matrix}y+5=\left(7-y\right)^2\\7-y\ge0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y+5=49-14y+y^2\\y\le7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y^2-15y+44=0\\y\le7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(y^2-11y\right)-\left(4y-44\right)=0\\y\le7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left(y-11\right)\left(y-4\right)=0\\y\le7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}y=4\\y=11\end{matrix}\right.\\y\le7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=4\\y\le7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x^2-3x=4\\y\le7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x^2-3x-4=0\\y\le7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left(x-4\right)\left(x+1\right)\\y\le7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\\y\le7\end{matrix}\right.\)

Vậy \(x\in\left\{4;-1\right\}\)

 

NV
8 tháng 5 2023

\(\sqrt{x^2+3x-2}=\sqrt{1+x}\)

\(\Leftrightarrow\left\{{}\begin{matrix}1+x\ge0\\x^2+3x-2=1+x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2+2x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\\left[{}\begin{matrix}x=1\\x=-3\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow x=1\)