K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7

Bài 2:

\(a)\left(x-2\right)^2-\left(x+3\right)^2-4\left(x+1\right)=5\\ \Leftrightarrow\left(x^2-4x+4\right)-\left(x^2+6x+9\right)-4\left(x+1\right)=5\\ \Leftrightarrow x^2-4x+4-x^2-6x-9-4x-4=5\\ \Leftrightarrow-14x-9=5\\ \Leftrightarrow-14x=9+5=14\\ \Leftrightarrow x=\dfrac{14}{-14}\\ \Leftrightarrow x=-1\\ b)\left(5x+1\right)^2-\left(5x+3\right)\left(5x-3\right)=30\\ \Leftrightarrow\left(25x^2+10x+1\right)-\left(25x^2-9\right)=30\\ \Leftrightarrow25x^2+10x+1-25x^2+9=30\\ \Leftrightarrow10x+10=30\\ \Leftrightarrow10x=30-10\\ \Leftrightarrow10x=20\\ \Leftrightarrow x=\dfrac{20}{10}=2\)

Bài 1:

a: Sửa đề: \(A=6-2x+x^2\)

\(=x^2-2x+1+5\)

\(=\left(x-1\right)^2+5>=5\forall x\)

Dấu '=' xảy ra khi x-1=0

=>x=1

b: \(B=2x^2+3x-5\)

\(=2\left(x^2+\dfrac{3}{2}x-\dfrac{5}{2}\right)\)

\(=2\left(x^2+2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{49}{16}\right)\)

\(=2\left(x+\dfrac{3}{4}\right)^2-\dfrac{49}{8}>=-\dfrac{49}{8}\forall x\)

Dấu '=' xảy ra khi \(x+\dfrac{3}{4}=0\)

=>\(x=-\dfrac{3}{4}\)

c: \(C=4x^2+8x+1\)

\(=4x^2+8x+4-3\)

\(=\left(2x+2\right)^2-3>=-3\forall x\)

Dấu '=' xảy ra khi 2x+2=0

=>2x=-2

=>x=-1

a: Khi m=2 thì pt sẽ là x^2-6x-3=0

=>\(x=3\pm2\sqrt{3}\)

 

14 tháng 5 2015

a)Ta có: \(\Delta\)= m2 - 4(m - 1) = m2 - 4m + 4 = (m - 2)\(\geq\)0 với mọi m

Vậy: PT có 2 nghiệm x1, x2 với mọi m

b)Theo Vi-et: x1 + x= m và x1x= m - 1

Do đó: A = x1+ x2- 6x1x= (x+ x2)- 8x1x= m2 - 8(m - 1) = m2 - 8m + 8 = ( m2 - 8m + 16) - 8 = (m - 4)2 - 8 \(\geq\)- 8 với mọi m

đúng nhé

Vậy: GTNN của A là -8 <=> m = 4

11 tháng 5 2020

Tui hổng biết

11 tháng 5 2020

Tui hổng biết

8 tháng 5 2023

`a)[2x+2]/3 < 2+[x-2]/2`

`<=>2(2x+2) < 12+3(x-2)`

`<=>4x+4 < 12+3x-6`

`<=>x < 2`

Trục số:  -----------------|---------------|---------------->

                                          0                         2

`b)3x-4 < 5x-6`

`<=>3x-5x < -6+4`

`<=>-2x < -2`

`<=>x > 1`

6 tháng 6 2021

a, Khi m=2, phương trình trở thành:

\(2x^2-5x+2=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2\end{matrix}\right.\)

Vậy với m=2, phương trình có nghiệm \(x=\dfrac{1}{2};x=2\)

b, \(\Delta=\left(m+3\right)^2-8m=m^2-2m+9=\left(m-1\right)^2+8>0,\forall m\)

\(\Rightarrow\) Phương trình đã cho có nghiệm với mọi m

Theo định lí Vi-et: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+3}{2}\\x_1x_2=\dfrac{m}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x_2^2+2x_1x_2=\dfrac{m^2+6m+9}{4}\\4x_1x_2=2m\end{matrix}\right.\)

\(\Rightarrow\left(x_1-x_2\right)^2=\dfrac{m^2-2m+9}{4}\)

\(\Rightarrow A=\left|x_1-x_2\right|=\dfrac{\sqrt{m^2-2m+9}}{2}=\dfrac{\sqrt{\left(m-1\right)^2+8}}{2}\ge\sqrt{2}\)

\(\Rightarrow minA=\sqrt{2}\Leftrightarrow m=1\)

 

 

6 tháng 6 2021

 pt: \(2x^2-\left(m+3\right)x+m=0\left(1\right)\)

a, khi m=2 ta có: \(2x^2-5x+2=0\)(2)

\(\Delta=\left(-5\right)^2-4.2.2=9>0\)

vậy pt(2) có 2 nghiệm phan biệt \(x3=\dfrac{5+\sqrt{9}}{2.2}=2\)

\(x4=\dfrac{5-\sqrt{9}}{2.2}=0,5\)

b,từ pt(1) có \(\Delta=\left[-\left(m+3\right)\right]^2-4m.2=m^2+6m+9-8m\)

\(=m^2-2m+9=\left(m-1\right)^2+8>0\left(\forall m\right)\)

vậy \(\forall m\) pt(1) luôn có 2 nghiệm phân biệt x1,x2

điều kiện để pt(1) có 2 nghiệm phân biệt không âm khi

\(\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.< =>\left\{{}\begin{matrix}\Delta>0\left(cmt\right)\\x1+x2>0\\x1.x2>0\end{matrix}\right.< =>\left\{{}\begin{matrix}\dfrac{m+3}{2}>0\\\dfrac{m}{2} >0\end{matrix}\right.\)\(< =>\left\{{}\begin{matrix}m>-3\\m>0\end{matrix}\right.\)

\(< =>m>0\)

theo vi ét =>\(\left\{{}\begin{matrix}x1+x2=\dfrac{m+3}{2}\\x1.x2=\dfrac{m}{2}\end{matrix}\right.\)

\(=>A=\left|x1-x2\right|\)

\(=>A=\sqrt{\left(x1-x2\right)^2}=\sqrt{\left(x1+x2\right)^2-4x1x2}\)

\(A=\sqrt{\left(\dfrac{m+3}{2}\right)^2-4\dfrac{m}{2}}=\sqrt{\dfrac{m^2+6m+9-8m}{4}}\)

\(A=\sqrt{\dfrac{\left(m-1\right)^2+8}{4}}=\dfrac{1}{2}\sqrt{\left(m-1\right)^2+8}\)\(\ge\sqrt{2}\)=>Min A=\(\sqrt{2}\)

dấu = xảy ra <=>m=1(TM)

15 tháng 11 2023

 Ta nhận thấy tổng các hệ số của pt bậc 2 đã cho là \(1-a+a-1=0\) nên pt này có 1 nghiệm là 1, nghiệm kia là \(a-1\), nhưng do không được giải pt nên ta sẽ làm theo cách sau:

 Ta thấy pt này luôn có 2 nghiệm phân biệt. Theo hệ thức Viète:

 \(\left\{{}\begin{matrix}x_1+x_2=a\\x_1x_2=a-1\end{matrix}\right.\)

 Vậy, \(M=\dfrac{3\left(x_1^2+x_2^2\right)-3}{x_1x_2\left(x_1+x_2\right)}\)

\(M=\dfrac{3\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-3}{a\left(a-1\right)}\)

\(M=\dfrac{3\left(a^2-2\left(a-1\right)\right)-3}{a\left(a-1\right)}\)

\(M=\dfrac{3\left[\left(a-1\right)^2-1\right]}{a\left(a-1\right)}\)

\(M=\dfrac{3a\left(a+2\right)}{a\left(a-1\right)}\)

\(M=\dfrac{3a+6}{a-1}\)

b) Ta có \(P=\left(x_1+x_2\right)^2-2x_1x_2=a^2-2\left(a-1\right)=\left(a-1\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow a=1\). Vậy để P đạt GTNN thì \(a=1\)

23 tháng 10 2019

a. + Với  m = − 1 2   phương trình (1) trở thành x 2 − 4 x = 0 ⇔ x = 0 x = 4 .

+ Vậy khi  m = − 1 2  phương trình có hai nghiệm x= 0 và x= 4.

b. + Phương trình có hai nghiệm dương phân biệt khi 

                            Δ = 2 m + 5 2 − 4 2 m + 1 > 0 x 1 + x 2 = 2 m + 5 > 0 x 1 . x 2 = 2 m + 1 > 0

+ Ta có  Δ = 2 m + 5 2 − 4 2 m + 1 = 4 m 2 + 12 m + 21 = 2 m + 3 2 + 12 > 0 , ∀ m ∈ R

+ Giải được điều kiện  m > − 1 2  (*).

+ Do P>0 nên P đạt nhỏ nhất khi P 2  nhỏ nhất.

+ Ta có P 2 = x 1 + x 2 − 2 x 1 x 2 = 2 m + 5 − 2 2 m + 1 = 2 m + 1 − 1 2 + 3 ≥ 3     ( ∀ m > − 1 2 ) ⇒ P ≥ 3    ( ∀ m > − 1 2 ) .

và P = 3  khi m= 0 (thoả mãn (*)).

+ Vậy giá trị nhỏ nhất  P = 3  khi m= 0.

7 tháng 4 2018

Phương trình x 2 + (4m + 1)x + 2(m – 4) = 0 có a = 1  0 và

∆ = ( 4 m + 1 ) 2 – 8 ( m – 4 ) = 16 m 2 + 33 > 0 ;   ∀ m

Nên phương trình luôn có hai nghiệm x 1 ;   x 2

Theo hệ thức Vi-ét ta có  x 1 + x 2 = − 4 m − 1 x 1 . x 2 = 2 n − 8

Xét

A = x 1 - x 2 2 = x 1 + x 2 2 - 4 x 1 x 2 = 16 m 2 + 33 ≥ 33

Dấu “=” xảy ra khi m = 0

Vậy m = 0 là giá trị cần tìm

Đáp án: B

13 tháng 5 2021

PT có 2 nghiệm `x_1,x_2`

`<=>\Delta>0`

`<=>(2m+3)^2-4m>0`

`<=>4m^2+12m+9-4m>0`

`<=>4m^2+8m+9>0``

`<=>(2m+2)^2+5>0`(luôn đúng)

Áp dụng vi-ét:$\begin{cases}x_1+x_2=2m+3\\x_1.x_2=m\end{cases}$
$x_1^2+x_2^2\\=(x_1+x_2)^2-2x_1.x_2\\=(2m+3)^2-2m\\=4m^2+12m+9-2m\\=4m^2+10m+9\\=(2m+\dfrac52)^2+\dfrac{11}{4} \geq \dfrac{11}{4}$
Dấu "=" `<=>2m=-5/2<=>m=-5/4`