K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2017

abcabc = 100000a + 10000b + 1000c + 100a + 10b + c

= 100100a + 10010b + 1001c

= 11 * 9100 * a + 11 * 910 * b + 11 * 91 * c

= 11 * (9100 * a + 910 * b + 91 * c) chia hết cho 11.

Vậy abcabc chia hết cho 11

19 tháng 10 2017

ta co: abc abc = abc . 1001 =abc . 11.99 chi het cho 11

9 tháng 7 2018

Câu 5 là chỗ cuối cùng là chia hết cho 7 nha .mình quên ghi

21 tháng 2 2015

ta phân tích như sau :

abcabc=abcx1001 vì 1001 chia hết cho 3 số nguyên 7 ;11;13 nên abcx1001cũng chia hết cho 7;11;13 mà abcabc=abcx1001 từ đó suy ra abcabc chia hết ít nhất 3 số nguyên tố

25 tháng 2 2015

ta có:abcabc=abc.1001

mà 1001 chia hết cho 7;11;13(là số nguyên tố)

nên abc.1001 chia hết cho 7;11;13(là số nguyên tố)

suy ra số tự nhiên  abcabc  chia hết cho ít nhất 3 số nguyên tố

8 tháng 4 2019

toán sao giống tiếng việt thế ?

8 tháng 4 2019

Ta có: abcabc = 1000abc + abc = 1001.abc 

Vì 1001 = 7.11.13 (là tích của 3 số nguyên tố) 

=> abcabc luôn chia hết cho 3 số nguyên tố là 7; 11 và 13

#công_túa

11 tháng 11 2015

abc abc=abc.1000+abc=abc.(1000+1) 
=abc.1001=abc.91.11 
vì 11 chia hết cho 11=>abc.91.11 chia hết cho 11 
vậy số abcabc lúc nào cũng chia hết cho 11

4 tháng 4 2019

Giải Bài 121 trang 21 SBT Toán 6 Tập 1 | Giải Sách bài tập Toán 6

31 tháng 7 2016

Ta có: \(\overline{abcabc}=\overline{abc}.1000+\overline{abc}=\overline{abc}.\left(1000+1\right)\)

\(\Rightarrow\overline{abc}.1001=\overline{abc}.91.11\)

Vì \(11⋮11\Rightarrow\overline{abc}.91.11⋮11\)

Vậy số \(\overline{abcabc}\) lúc nào cũng chia hết cho 11

31 tháng 7 2016

abcabc = 1000 . abc + abc = 1001 . abc = 11 . 91 . abc

Vậy abcabc chia hết cho 11.

11 tháng 11 2015

abc abc=abc.1000+abc=abc.(1000+1) 
=abc.1001=abc.91.11 
vì 11 chia hết cho 11=>abc.91.11 chia hết cho 11 
vậy số abcabc lúc nào cũng chia hết cho 11

20 tháng 5 2017

ta co abcabc=1000.abc+abc=abc.1001=91.11.abc

ta co 11 chia hết cho 11 nên abcabc chia hêt cho 11

28 tháng 9 2015

Bạn vào câu hỏi tương tự