K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2024

\(D=x^2+y^2-x+6y+10\\ =\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+6y+9\right)+\dfrac{3}{4}\\ =\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}\right)+\left(y^2+2\cdot y\cdot3+3^2\right)+\dfrac{3}{4}\\ =\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)

Ta có: \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\\\left(y+3\right)^2\ge0\forall y\end{matrix}\right.=>D=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x,y\)

Dấu "=" xảy ra \(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)

______________________________

\(F=2xy-2x^2-y^2+10x-27\\ =-\left(x^2-2xy+y^2\right)-\left(x^2-10x+25\right)-2\\ =-\left(x-y\right)^2-\left(x-5\right)^2-2\)

Ta có: \(\left\{{}\begin{matrix}\left(x-y\right)^2\le0\forall x,y\\-\left(x-5\right)^2\le0\forall x\end{matrix}\right.=>F=-\left(x-y\right)^2-\left(x-5\right)^2-2\le-2\forall x,y\)

Dấu "=" xảy ra: \(\left\{{}\begin{matrix}x-y=0\\x-5=0\end{matrix}\right.\Leftrightarrow x=y=5\)

\(A=-x^2+x-1\)

\(=-\left(x^2-x+1\right)\)

\(=-\left(x^2-x+\dfrac{1}{4}+\dfrac{3}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}< =-\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x-\dfrac{1}{2}=0\)

=>\(x=\dfrac{1}{2}\)

\(B=6x-x^2-10\)

\(=-\left(x^2-6x+10\right)\)

\(=-\left(x^2-6x+9+1\right)\)

\(=-\left(x-3\right)^2-1< =-1\forall x\)

Dấu '=' xảy ra khi x-3=0

=>x=3

\(C=-x^2+5x+3\)

\(=-\left(x^2-5x-3\right)\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{37}{4}\right)\)

\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{37}{4}< =\dfrac{37}{4}\forall x\)

Dấu '=' xảy ra khi x-5/2=0

=>x=5/2

\(D=x^2-x+y^2+6y+10\)

\(=x^2-x+\dfrac{1}{4}+y^2+6y+9+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)

\(F=2xy-2x^2-y^2+10x-27\)

\(=-\left(2x^2+y^2-2xy-10x+27\right)\)

\(=-\left(x^2-2xy+y^2+x^2-10x+25+2\right)\)

\(=-\left(x-y\right)^2-\left(x-5\right)^2-2< =-2\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=x=5\end{matrix}\right.\)

B=y^2-y+1

=y^2-2*y*1/2+1/4+3/4

=(y-1/2)^2+3/4>=3/4

Dấu = xảy ra khi y=1/2

E=-x^2+x+2

=-(x^2-x-2)

=-(x^2-x+1/4-9/4)

=-(x-1/2)^2+9/4<=9/4

Dấu = xảy ra khi x=1/2

1 tháng 9 2021

a) \(2x^2-x+1=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)

\(ĐTXR\Leftrightarrow x=\dfrac{1}{4}\)

b) \(5x-x^2+4=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{41}{4}\le\dfrac{41}{4}\)

\(ĐTXR\Leftrightarrow x=\dfrac{5}{2}\)

c) \(x^2+5y^2-2xy+4y+3=\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)

\(ĐTXR\Leftrightarrow\)\(x=y=-\dfrac{1}{2}\)

b: ta có: \(-x^2+5x+4\)

\(=-\left(x^2-5x-4\right)\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{41}{4}\right)\)

\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{41}{4}\le\dfrac{41}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

10 tháng 9 2019

\(-2x+4\sqrt{x}+1\)

\(=-2\left(x-2\sqrt{x}+1\right)+3\)

\(=-2\left(\sqrt{x}-1\right)^2+3\le3\left(\forall x\ge0\right)\)

Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-1=0\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)

10 tháng 9 2019

 ĐKXĐ :\(x\ge0\)

\(x-4\sqrt{x}+5\)

\(=x-4\sqrt{x}+4+1\)

\(=\left(\sqrt{x}-2\right)^2+1\ge1\forall x\ge0\)

Dấu"=" xả ra <=> \(\left(\sqrt{x}-2\right)^2=0\)

                    \(\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)

11 tháng 8 2021

C = {x} _576+6967=986=79

11 tháng 8 2021

Có:\(\left|x\right|\ge0\)

\(\Rightarrow\left|x\right|+2017\ge2017\)

\(\Leftrightarrow\frac{\left|x\right|+2017}{2018}\ge\frac{0+2017}{2018}=\frac{2017}{2018}\)

Vậy GTNN của C =2017/2018 khi và chỉ khi x=0

11 tháng 8 2021

2017/2018 nha bạn

11 tháng 8 2021

\(C=|x|+\frac{2017}{2018}\)

vì \(|x|\ge0\forall x\)

\(\Rightarrow|x|+\frac{2017}{2018}\ge\frac{2017}{2018}\forall x\)\(\Rightarrow C\ge\frac{2017}{2018}\)

Dấu "=" xảy ra khi x=0

vậy \(Cmin=\frac{2017}{2018}\Leftrightarrow x=0\)

27 tháng 8 2020

B = 4x2 + 8x 

= 4( x2 + 2x + 1 ) - 4

= 4( x + 1 )2 - 4

4( x + 1 )2 ≥ 0 ∀ x => 4( x + 1 )2 - 4 ≥ -4

Đẳng thức xảy ra <=> x + 1 = 0 => x = -1

=> MinB = -4 <=> x = -1

C = -2x2 + 8x - 15

= -2( x2 - 4x + 4 ) - 7

= -2( x - 2 )2 - 7

-2( x - 2 )2 ≤ 0 ∀ x => -2( x - 2 )2 - 7 ≤ -7

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

=> MaxC = -7 <=> x = 2

20 tháng 4 2021

\(B\left(1-x\right)\left(3x+4\right)\)

\(\rightarrow B=\frac{1}{3}\left(3-3x\right)\left(3x+4\right)\)

\(\rightarrow B\text{⩽ }\frac{1}{3}\left(\frac{3-3x+3x+4}{2}\right)^2\)

\((BTD\)\(AM-GM)\)

\(\rightarrow B\text{⩽ }\frac{1}{3}.\frac{49}{4}\)

\(\rightarrow B\text{⩽ }\frac{49}{12}\)

Dấu '' = '' xảy ra \(\Leftrightarrow3-3x=3x+4\Leftrightarrow-\frac{1}{6}\)

Vậy \(max\)\(B=\frac{49}{12}\Leftrightarrow x=-\frac{1}{6}\)

\(B=\left(1-x\right).\left(3x+4\right)\)

Ta có :

\(B=3x+4-3x^2-4x\)

\(B=-3x^2-x+4\)

\(B=-3\left(x^2+\frac{1}{3}x-\frac{4}{3}\right)\)

\(B=-3\left(x^2+2.\frac{1}{6}.x+\frac{1}{36}-\frac{1}{36}-\frac{4}{3}\right)\)

\(B=-3\left[\left(x+\frac{1}{6}\right)^2-\frac{49}{36}\right]\)

Vì \(\left(x+\frac{1}{6}\right)^2\ge0\)

\(\Rightarrow\left(x+\frac{1}{36}\right)^2-\frac{49}{36}\ge-\frac{49}{36}\)

\(\Rightarrow B\le\frac{49}{12}\)

\(\Rightarrow\)GTLN của B là \(\frac{49}{12}\)Khi \(x=-\frac{1}{6}\)