tìm n thuộc N để
3n2 - 2 chia hết cho n2 + 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3n+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
=>5 chia hết cho n-1
=>n-1 E Ư(5)={-1;1;-5;5}
+)n-1=-1=>n=0
+)n-1=1=>n=2
+)n-1=-5=>n=-4
+)n-1=5=>n=6
vậy...
\(n^2+2n-7:n+2=>n\left(n+2\right)-7:n+2\) ) (: là chia hết)
=>-7 chia hết cho n+2
=>n+2 E Ư(-7)={-1;1;-7;7}
+)n+2=-1=>n=1
+)n+2=1=>n=3
+)n+2=-7=>n=-5
+)n+2=7=>n=9
vậy...
tick nhé
n2 + 3 chia hết cho n + 2
n + 2 chia hết cho n + 2
=> n(n + 2) chia hết cho n + 2
n2 + 2n chia hết cho n + 2
=> (n2 + 2n - n2 + 3) chia hết cho n + 2
2n - 3 chia hết cho n + 2
n + 2 chia hết cho n + 2
=> 2(n + 2) chia hết cho n + 2
2n + 4 chia hết cho n + 2
=>(2n + 4 - 2n + 3) chia hết cho n + 2
7 chia hết cho n + 2
n + 2 thuộc U(7) = {-7;-1;1;7}
n + 2 = -7 => n = -9
n + 2 = -1 => n = -3
n + 2 = 1 => n = -1
n + 2 = 7 => n = 5
Mà n là số tự nhiên nên n = 5
n^2+3 chia hết cho n+2
=>(n^2+4n+4)-4n-1 chia hết cho n+2
=>(n+2)^2 -(4n+1) chia hết cho n+2
=>4n+1 chia hết cho n+2(vì (n+2)^2 chia hết cho n+2)
=>4(n+2)-7chia hết cho n+2
=>7 chia hết cho n+2
=>n+2 thuộc Ư(7)
=>n+2=(1,7)
=> n=-1;5 mà n là số tự nhiên nên n=5
đáp số n=5
a: \(\left(n+3\right)^2-n^2=\left(n+3+n\right)\left(n+3-n\right)\)
\(=3\left(2n+3\right)⋮3\)
b: Đặt A=\(\left(n-5\right)^2-n^2\)
\(A=\left(n-5\right)^2-n^2\)
\(=n^2-10n+25-n^2\)
\(=-10n+25=5\left(-2n+5\right)⋮5\)
\(A=\left(n-5\right)^2-n^2\)
\(=-10n+25\)
\(-10n⋮2;25⋮̸2\)
=>-10n+25 không chia hết cho 2
=>A không chia hết cho 2
(n + 3)² - n² = n² + 6n + 9 - n²
= 6n + 9
= 3(3n + 3) ⋮ 3
Vậy [(n + 3)² - n²] ⋮ 3 với mọi n ∈ ℕ
--------
(n - 5)² - n² = n² - 10n + 25 - n²
= -10n + 25
= -5(2n - 5) ⋮ 5
Do -10n ⋮ 2
25 không chia hết cho 2
⇒ -10n + 25 không chia hết cho 2
Vậy [(n - 5)² - n²] ⋮ 5 và không chia hết cho 2 với mọi n ∈ ℕ
cách khác : a/ n + 6 = (n + 2) + 4 chia het cho n + 2 => 4 chia het cho n + 2 => n + 2 la uoc cua 4
=>ma n + 2 >=2 nen ta co hai truong hop
n + 2 = 4 => n = 2;
n + 2 = 2 => n = 0,
Vay n = 2 ; 0.
b/ Tuong tu cau a
c/ (3n + 1) Chia het cho 11 - 2n => [2(3n + 1) + 3(11 - 2n)] chia het cho 11 - 2n
=> 35 chia het cho 11 - 2n =>
+)11 - 2n = 1 => n = 5
+)11 - 2n = 5 => n = 3
+)11 - 2n = 7 => n = 2
+)11 - 2n = 35 => n < 0 (loai)
+)11 - 2n = -1 => n = 6
+)11 - 2n = - 5 => n = 8
+)11 - 2n = -7 => n = 9
+)11 - 2n = -35 => n=23
Vay : n = 2;3;5;6;8;9;23
d/ B = (n2 + 4):(n + 1) = [(n +1)(n - 1) + 5]:(n + 1) = n - 1 + 5/(n +1)
Do n2 + 4 chia het cho n + 1 => 5 chia het cho n +1 => n = 0;4.
a) n+6 chia hết cho n+2=> n+2 là ước của n+6=>n+2 là Ư(4)={-4,-2,-1,1,2,4}
n+2=-4=>n=-6
n+2=-2=>n=-4
n+2=-1=>n=-3
n+2=1=>n=-1
n+2=2=>n=0
n+2=4=>n=2
vậy x thuộc {-6,-4,-3,-1,0,2}
b) tương tự