K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=BC^2-AB^2=20^2-12^2=256=16^2\)

=>AC=16(cm)

b: Xét ΔHID vuông tại H và ΔHBA vuông tại H có

HI=HB

HD=HA

Do đó: ΔHID=ΔHBA

=>DI=BA

ΔHID=ΔHBA

=>\(\widehat{HDI}=\widehat{HAB}\)

=>DI//AB

c: Ta có: DI//AB

AB\(\perp\)AC

Do đó: DI\(\perp\)AC

Xét ΔCAD có

DI,CH là các đường cao

DI cắt CH tại I

Do đó: I là trực tâm của ΔCAD

=>AI\(\perp\)CD
d: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot20=12\cdot16=192\)

=>AH=192/20=9,6(cm)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HB=\sqrt{12^2-9,6^2}=7,2\left(cm\right)\)

=>AH>HB

mà AD=2AH và BI=2BH

nên AD>BI