K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 7 2024

Lời giải:

Ta thấy, với $a,b,c,d>0$ thì:

$\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}> \frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=\frac{a+b+c+d}{a+b+c+d}=1(*)$

Lại có:

Xét $\frac{a}{a+b+c}-\frac{a+d}{a+b+c+d}=\frac{-d(b+c)}{(a+b+c)(a+b+c+d)}<0$ với mọi $a,b,c,d>0$

$\Rightarrow \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}$

Tương tự: $\frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}, \frac{c}{c+d+a}< \frac{c+b}{a+b+c+d}; \frac{d}{d+a+b}< \frac{d+c}{a+b+c+d}$

Cộng lại suy ra:

$\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+d+b+a+c+b+d+c}{a+b+c+d}=\frac{2(a+b+c+d)}{a+b+c+d}=2(**)$

Từ $(*); (**)\Rightarrow$ đpcm.

 

4 tháng 1 2017

a) \(\left(a-b\right)-\left(2c-4a\right)+3c\)

\(=a-b-2c+4a+3c\)

\(=5a-b+c\)

b) \(\left(12-60\right)-\left(2.-135-4.12\right)+3.-135\)

\(=-48-\left(-318\right)+\left(-405\right)\)

\(=-135\)

4 tháng 1 2017


Bài 1:
a, A=(a-b)-(2c-4a)+3c
      =a-b-2c+4a+3c
      =5a-b+c
b, thay a=12; b=60; c=-135
A=5*12-60+(-135)
A=-135
Bài 2:
a, (a-b)+(c-d)-(a+c)
    =a-b+c-d-a-c
    =-b-d
    =-(b+d)         (đpcm)
b, (a-b)-(c-d)+(b+c)
    =a-b-c+d+b+c
    =a+d     (xem lại đề bài bạn)
Chúc may mắn

25 tháng 1 2017

(a + b)(c + d) - (a + d)(b + c) 

= a(c + d) + b(c + d) - [ a(b + c) + d(b + c)]

= ac + ad + bc + bd - [ ab + ac + bd + cd]

= ac + ad + bc + bd - ab - ac - bd - cd 

= (ac - ac) + (bd - bd) + ad + bc - ab - cd

= ad + bc - ab - cd

= ad - ab - cd + bc 

= a(d - b) - c(d - b) 

= (a - c)(d - b)   (ĐPCM)

25 tháng 1 2017

3555555555555555555

7 tháng 2 2020

Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath

12 tháng 3 2022

Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath

31 tháng 1 2019

Ta có:

Vế trái: -a.(c-d)-d.(a+c)

=-ac+ad-ad-cd

=-ac-cd (1)

Vế phải: -c(a+d)=-ac-cd (1)

Vì (1)=(2)

<=> -a.(c-d)-d.(a+c)=-c.(a+d) (đpcm)

(Lưu ý: "đpcm" nghĩa là "điều phải chứng minh".)

31 tháng 1 2019

Lời giải:

1) \(VT=-a.\left(c-d\right)-d.\left(a+c\right)\)

$=-ac+ad-da-dc$

$=-ac-dc$

$=-c(a+d) (đpcm)$

$2) (3a+2).(2a-1)+(3-a).(6a+2)-17.(a-1)$

$=6a^2-3a+4a-2+18a+6-6a^2-2a-17a+17$

$=21$

Vậy giá trị biểu thức không phụ thuộc vào a

7 tháng 12 2020

câu a dùng biến đổi tương đương là được

20 tháng 2 2018

1.a) Để B là phân số \(\Leftrightarrow n+5\ne0\Rightarrow n\ne5\)

b) Để b là số nguyên \(n-3⋮n+5\)

mà   \(n+5⋮n+5\Rightarrow n-3-\left(n+5\right)⋮n+5\Rightarrow-8⋮n+5\)   \(n+5\inƯ\left(-8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)  

Ta có bảng sau:

n+51-12-24-48-8
n-4-6-3-7-1-93-13

Vậy n=-4;-6;-3;-7;-1;-9;3;-13

2.

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\hept{\begin{cases}a=ct\\b=dt\end{cases}\left(t\in Z,t\ne0\right)}\)

a)\(\frac{a+c}{b+d}=\frac{ct+c}{dt+d}=\frac{c\left(t+1\right)}{d\left(t+1\right)}=\frac{c}{d}=\frac{a}{b}\)

b)\(\frac{a-c}{b-d}=\frac{ct-c}{dt-d}=\frac{c\left(t-1\right)}{d\left(t-1\right)}=\frac{c}{d}=\frac{a}{b}\)

20 tháng 2 2018

Cái câu 2: Hoàng Nguyễn Văn làm có j đó sai sai

Đây:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)(1)

Suy ra: \(\orbr{\begin{cases}a=bk\\c=dk\end{cases}}\)

Suy ra: \(a+c=bk+dk=k\left(b+d\right)\)

Suy ra \(\frac{a+c}{b+d}=k\)(2)

Từ (1) và (2) => đpcm

18 tháng 11 2019

Ta có: \(\frac{a}{b}=\frac{a+c}{b+d}\)

\(\Leftrightarrow a\left(b+d\right)=b\left(a+c\right)\\ \Leftrightarrow ab+ad=ab+bc\\ \Leftrightarrow ad=bc\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)

=> ĐPCM.

18 tháng 11 2019

ta có: \(\frac{a}{b}=\frac{a+c}{b+d}\) \(\Rightarrow a\left(b+d\right)=b\left(a+c\right)\)

\(\Leftrightarrow ab+ad=ba+bc\)

\(\Leftrightarrow ad=bc\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)

Vậy \(\frac{a}{b}=\frac{a+c}{b+d}\) \(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4ab) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 86. Chứng minh các bất đẳng thức:a) (a...
Đọc tiếp

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.

2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.

3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   

5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

6. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

7. Tìm các giá trị của x sao cho:

a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5 c) 2x(2x – 1) ≤ 2x – 1.

8. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)

9. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của avà b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.

10. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.

11. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :

x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0

3
23 tháng 10 2016

bài 5 nhé:

a) (a+1)2>=4a

<=>a2+2a+1>=4a

<=>a2-2a+1.>=0

<=>(a-1)2>=0 (luôn đúng)

vậy......

b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:

a+1>=\(2\sqrt{a}\)

tương tự ta có:

b+1>=\(2\sqrt{b}\)

c+1>=\(2\sqrt{c}\)

nhân vế với vế ta có:

(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)

<=>(a+)(b+1)(c+1)>=8 (vì abc=1)

vậy....

23 tháng 10 2016

bạn nên viết ra từng câu

Chứ để như thế này khó nhìn lắm

13 tháng 12 2016

a) Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

Ta có:
\(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2}{d^2}\) (1)

\(\frac{a^2-b^2}{c^2-d^2}=\frac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\frac{b^2.k^2-b^2}{d^2.k^2-d^2}=\frac{b^2.\left(k^2-1\right)}{d^2.\left(k^2-1\right)}=\frac{b^2}{d^2}\) (2)

Từ (1) và (2) suy ra \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\left(đpcm\right)\)

b) Giải:
Để \(P\in Z\Rightarrow2x-3⋮x+1\)

Ta có:
\(2x-3⋮x+1\)

\(\Rightarrow\left(2x+2\right)-5⋮x+1\)

\(\Rightarrow5⋮x+1\)

\(\Rightarrow x+1\in\left\{1;-1;5;-5\right\}\)

+) \(x+1=1\Rightarrow x=0\)

+) \(x+1=-1\Rightarrow x=-2\)

+) \(x+1=5\Rightarrow x=4\)

+) \(x+1=-5\Rightarrow x=-6\)

Vậy \(x\in\left\{0;-2;4;-6\right\}\)

 

 

\(\Rightarrow5⋮x+1\)

13 tháng 12 2016

1)Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)(tính chất dãy tỉ số bằng nhau)

\(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\left(đpcm\right)\)

2)\(P=\frac{2x-3}{x+1}=\frac{2x+2-5}{x+1}=\frac{2\left(x+1\right)-5}{x+1}=2-\frac{5}{x+1}\)

\(\Rightarrow P\in Z\Leftrightarrow2-\frac{5}{x+1}\in Z\Leftrightarrow\frac{5}{x+1}\in Z\Leftrightarrow5⋮x+1\Leftrightarrow x+1\inƯ\left(5\right)\)

\(\Rightarrow x+1\in\left\{-1;-5;1;5\right\}\)

\(\Rightarrow x\in\left\{-2;-6;0;4\right\}\)