ai đó cứu tôi với
tìm số dư phép chia sau
a) 22024+412023:7
b)23000+2 :25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(2^{2024}=2^2.2^{2022}=4.\left(2^3\right)^{674}=4.8^{674}\)
Do \(8\equiv1\left(mod7\right)\Rightarrow8^{674}\equiv1\left(mod7\right)\)
\(\Rightarrow4.8^{674}\equiv4\left(mod7\right)\)
Hay \(2^{2024}\) chia 7 dư 4
b.
\(5^{70}+7^{50}=\left(5^2\right)^{35}+\left(7^2\right)^{25}=25^{35}+49^{25}\)
Do \(\left\{{}\begin{matrix}25\equiv1\left(mod12\right)\\49\equiv1\left(mod12\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}25^{35}\equiv1\left(mod12\right)\\49^{25}\equiv1\left(mod12\right)\end{matrix}\right.\)
\(\Rightarrow25^{35}+49^{25}\equiv2\left(mod12\right)\)
Hay \(5^{70}+7^{50}\) chia 12 dư 2
c.
\(3^{2005}+4^{2005}=\left(3^5\right)^{401}+\left(4^5\right)^{401}=243^{401}+1024^{401}\)
Do \(\left\{{}\begin{matrix}243\equiv1\left(mod11\right)\\1024\equiv1\left(mod11\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}243^{401}\equiv1\left(mod11\right)\\1024^{401}\equiv1\left(mod11\right)\end{matrix}\right.\)
\(\Rightarrow243^{401}+1024^{401}\equiv2\left(mod11\right)\)
Hay \(3^{2005}+4^{2005}\) chia 11 dư 2
d.
\(1044\equiv1\left(mod7\right)\Rightarrow1044^{205}\equiv1\left(mod7\right)\)
Hay \(1044^{205}\) chia 7 dư 1
e.
\(3^{2003}=3^2.3^{2001}=9.\left(3^3\right)^{667}=9.27^{667}\)
Do \(27\equiv1\left(mod13\right)\Rightarrow27^{667}\equiv1\left(mod13\right)\)
\(\Rightarrow9.27^{667}\equiv9\left(mod13\right)\)
hay \(3^{2003}\) chia 13 dư 9
750 - 570 = 180
SBC giảm 180
SBC đúng cần cộng thêm : 180 + 60 = 240
THƯƠNG TĂNG LÀ: 240 : 135 = 1 (105)
THƯƠNG ĐÚNG : 226 + 1 = 227
SỐ DƯ ĐÚNG 105
số chia bé nhất có thể là 45
số bị chia là : 123+45+44=5579
đáp số 5579
Ta thấy 4000 : 82 = 48 (dư 64)
64 lớn hơn 47 nên số bị chia nhỏ hơn 4000 là:
82 x 48 + 47 = 3983
Cho ta biết số chia là 48.
tk mình đi
Bài 1:
Theo đề bài ta có:
\(a=4q_1+3=9q_2+5\) (\(q_1\) và \(q_2\) là thương trong hai phép chia)
\(\Rightarrow\left[\begin{matrix}a+13=4q_1+3+13=4\left(q_1+4\right)\left(1\right)\\a+13=9q_2+5+13=9\left(q_2+2\right)\left(2\right)\end{matrix}\right.\)
Từ (1) và (2) suy ra: \(a+13=BC\left(4;9\right)\)
Mà \(Ư\left(4;9\right)=1\Rightarrow a+13=BC\left(4;9\right)=4.9=36\)
\(\Rightarrow a+13=36k\left(k\ne0\right)\)
\(\Rightarrow a=36k-13=36\left(k-1\right)+23\)
Vậy \(a\div36\) dư \(23\)
Câu 1
Theo bài ra ta có:
\(a=4q_1+3=9q_2+5\)(q1 và q2 là thương của 2 phép chia)
\(\Rightarrow a+13=4q_1+3+13=4\left(q_1+4\right)\left(1\right)\)
và \(a+13=9q_2+5+13=9.\left(q_2+2\right)\left(2\right)\)
Từ (1) và (2) ta có \(a+13\) là bội của 4 và 9 mà ƯC(4;9)=1
nên a là bội của 4.9=36
\(\Rightarrow a+13=36k\left(k\in N\right)\)
\(\Rightarrow a=36k-13\)
\(\Rightarrow a=36.\left(k-1\right)+23\)
Vậy a chia 36 dư 23
Số dư là :
7 - 1 = 6
Số bị chia là :
87 * 7 + 6 = 615
Đáp số : 615
hơi khó nha
a)
\(2^{2024}=2^{8.11.23}\)
\(2^8\equiv4\left(mod7\right)\)
\(2^{8.11}\equiv\left(2^8\right)^{11}\left(mod7\right)\equiv4^{11}\left(mod7\right)\equiv2\left(mod7\right)\)
\(\Rightarrow2^{8.11.23}\equiv\left(2^{8.11}\right)^{23}\left(mod7\right)\equiv2^{23}\left(mod7\right)\equiv4\left(mod7\right)\)
\(\Rightarrow2^{2024}\) chia 7 dư 4
\(41^{2023}=41.\left(41^2\right)^{1011}\)
\(41^2\equiv1\left(mod7\right)\)
\(\Rightarrow\left(41^2\right)^{1011}\equiv1^{1011}\left(mod7\right)\equiv1\left(mod7\right)\)
\(\Rightarrow41.\left(41^2\right)^{1011}\equiv41.1\left(mod7\right)\equiv6\left(mod7\right)\)
\(\Rightarrow2^{2024}+41^{2023}\equiv4+6\left(mod7\right)\equiv3\left(mod7\right)\)
Vậy \(2^{2024}+41^{2023}\) chia 7 dư 3