Tính nhanh
A=1\2 + 1\6 + 1\12 + 1\20 + ......+ 1\90
M.n giúp mình nhanh nha!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2=1/1.2
1/6=1/2.3
1/12=1/3.4
1/20=1/4.5
1/30=1/5.6
1/42=1/6.7
ta có 1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7
= 1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7
=1/1-1/7
=6/7
ta có:
1/6+1/12+1/20+1/30+.........+1/90+1/110
= 1/2x3+1/3x4+1/4x5+1/5x6+....+1/9x10+1/10x11
= 1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+....+1/9-1/10+1/10-1/11
=1/2-1/11=11/22-2/22=9/22
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\)
\(=\left(\frac{1}{2}-\frac{1}{11}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+...+\left(\frac{1}{10}-\frac{1}{10}\right)\)
\(=\frac{1}{2}-\frac{1}{11}=\frac{11}{22}-\frac{2}{22}=\frac{9}{22}\)
M = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)
M = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
M = 1 -\(\frac{1}{9}\)=\(\frac{8}{9}\)
1/90 - 1/72 - 1/56 - 1/42 - 1/30 - 1/20 - 1/12 - 1/6 - 1/2
= 1/90 - ( 1/72 + 1/56 + 1/42 + 1/30 + 1/20 + 1/12 + 1/6 + 1/2)
= 1/90 - ( 1/2 + 1/6 + 1/12 + ...+ 1/72)
= 1/90 - ( 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/8.9)
= 1/90 - ( 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/8 - 1/9)
= 1/90 - ( 1 - 1/9)
= 1/90 - 8/9
= 1/90 - 80/90
= -79/90
1/90 - 1/72 - 1/56 - 1/42 - 1/30 - 1/20 - 1/12 - 1/6 - 1/2
= 1/90 - ( 1/72 + 1/56 + 1/42 + 1/30 + 1/20 + 1/12 + 1/6 + 1/2)
= 1/90 - ( 1/2 + 1/6 + 1/12 + ...+ 1/72)
= 1/90 - ( 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/8.9)
= 1/90 - ( 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/8 - 1/9)
= 1/90 - ( 1 - 1/9)
= 1/90 - 8/9
= 1/90 - 80/90
= -79/90
mk nha cac ban
ta nhận thấy
1/2=1-1/2
1/6=1/2-1/3
1/12=1/3-1/4
1/20=1/4-1/5
1/30=1/5-1/6
1/42=1/6-1/7
ta có:
1/2+1/6+1/12+1/20+1/30+1/42
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7
=1-1/7
=6/7
bn tự hiểu nha
1/2+1/6+1/12+1/20+1/30+1/42 = \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
= \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\) = 1-1/7=6/7
Bài làm
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{90}+\frac{1}{110}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{9.10}+\frac{1}{10.11}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(A=\frac{1}{1}-\frac{1}{11}\)
\(A=\frac{10}{11}\)
a: \(A=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^7\)
=>\(2\cdot A=1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^6\)
=>\(2A-A=1-\left(\dfrac{1}{2}\right)^7=1-\dfrac{1}{128}=\dfrac{127}{128}\)
=>\(A=\dfrac{127}{128}\)
b: \(B=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{10\cdot11}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{10}-\dfrac{1}{11}\)
\(=1-\dfrac{1}{11}=\dfrac{10}{11}\)
A= \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\)
= \(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{9x10}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
=\(1-\frac{1}{10}=\frac{9}{10}\)
\(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}=\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{9\times10}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}=\frac{9}{10}\)