Chứng minh biểu thức sau luôn có giá trị dương với mọi giá trị của biến
B= 2x2 - 2x + 3
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NM
2
Những câu hỏi liên quan
Ta có:
\(B=2x^2-2x+3\\ =\dfrac{1}{2}\cdot\left(4x^2-4x+6\right)\\ =\dfrac{1}{2}\cdot\left[\left(4x^2-4x+1\right)+5\right]\\ =\dfrac{1}{2}\cdot\left[\left(2x-1\right)^2+5\right]\\ =\dfrac{1}{2}\left(2x-1\right)^2+\dfrac{5}{2}\)
\(\left(2x-1\right)^2\ge0\forall x\\ =>B=\dfrac{1}{2}\left(2x-1\right)^2+\dfrac{5}{2}\ge\dfrac{1}{2}\cdot0+\dfrac{5}{2}=\dfrac{5}{2}>0\)
=> B luôn có giá trị dương
\(B=2x^2-2x+3\\ \Leftrightarrow B=x^2+x^2-2x+1+2\\ \Leftrightarrow B=\left(x^2-2x+1\right)+x^2+2\\ \Leftrightarrow B=\left(x-1\right)^2+x^2+2\)
Nhận xét:
\(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0,\forall x\\x^2\ge0,\forall x\end{matrix}\right.\)
\(\Rightarrow\left(x-1\right)^2+x^2+2>0,\forall x\)
hay \(B>0,\forall x\)
Vậy...