tìm x thuộc số tự nhiên
5.(x-3)=15
5 mũ x-1+125
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x=3
b) x=1
c) x=1 hoặc -5
d) x=2
e) x=2
g) x=2
h) x=1 hoặc x=0 hoặc x=-1
i) x=-1 hoặc x=0
\(a.4^x=64\)
\(4^x=4^3\)
\(\Rightarrow x=3\)
\(b,3^{x\times4}=81\)
\(3^{x\times4}=3^4\)
\(x\times4=4\)
\(\Rightarrow x=1\)
\(c,\left(2+x\right)^4=81\)
\(\left(2+x\right)^4=3^4\)
\(2+x=3\)
\(x=3-2\)
\(x=1\)
\(d,5^{x\times5}=125\)
\(5^{x\times5}=5^3\)
\(x\times5=3\)
\(x=3:5\)
\(x=\frac{3}{5}\)
2x . 4 = 128
2x = 128 : 4
2x = 32
2x = 2 . 2 . 2 . 2 . 2
2x = 25
x = 5
(2x + 1)3 = 125
(2x + 1)3 = 5 . 5 . 5
(2x + 1)3 = 53
2x + 1 = 5
2x = 5 - 1
2x = 4
x = 4 : 2
x = 2
x15 = x
x = 1
(x - 5)4 = (x - 5)6
x = 6
Bài 1:
2\(x\) = 4
2\(^x\) = 22
\(x=2\)
Vậy \(x=2\)
Bài 2:
2\(^x\) = 8
2\(^x\) = 23
\(x=3\)
Vậy \(x=3\)
Bài 6 :
a) \(\dfrac{625}{5^n}=5\Rightarrow\dfrac{5^4}{5^n}=5\Rightarrow5^{4-n}=5^1\Rightarrow4-n=1\Rightarrow n=3\)
b) \(\dfrac{\left(-3\right)^n}{27}=-9\Rightarrow\dfrac{\left(-3\right)^n}{\left(-3\right)^3}=\left(-3\right)^2\Rightarrow\left(-3\right)^{n-3}=\left(-3\right)^2\Rightarrow n-3=2\Rightarrow n=5\)
c) \(3^n.2^n=36\Rightarrow\left(2.3\right)^n=6^2\Rightarrow\left(6\right)^n=6^2\Rightarrow n=6\)
d) \(25^{2n}:5^n=125^2\Rightarrow\left(5^2\right)^{2n}:5^n=\left(5^3\right)^2\Rightarrow5^{4n}:5^n=5^6\Rightarrow\Rightarrow5^{3n}=5^6\Rightarrow3n=6\Rightarrow n=3\)
Bài 7 :
a) \(3^x+3^{x+2}=9^{17}+27^{12}\)
\(\Rightarrow3^x\left(1+3^2\right)=\left(3^2\right)^{17}+\left(3^3\right)^{12}\)
\(\Rightarrow10.3^x=3^{34}+3^{36}\)
\(\Rightarrow10.3^x=3^{34}\left(1+3^2\right)=10.3^{34}\)
\(\Rightarrow3^x=3^{34}\Rightarrow x=34\)
b) \(5^{x+1}-5^x=100.25^{29}\Rightarrow5^x\left(5-1\right)=4.5^2.\left(5^2\right)^{29}\)
\(\Rightarrow4.5^x=4.25^{2.29+2}=4.5^{60}\)
\(\Rightarrow5^x=5^{60}\Rightarrow x=60\)
c) Bài C bạn xem lại đề
d) \(\dfrac{3}{2.4^x}+\dfrac{5}{3.4^{x+2}}=\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{10}}\)
\(\Rightarrow\dfrac{3}{2.4^x}-\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{x+2}}-\dfrac{5}{3.4^{10}}=0\)
\(\Rightarrow\dfrac{3}{2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)+\dfrac{5}{3.4^2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)=0\)
\(\Rightarrow\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)\left(\dfrac{3}{2}+\dfrac{5}{3.4^2}\right)=0\)
\(\Rightarrow\dfrac{1}{4^x}-\dfrac{1}{4^8}=0\)
\(\Rightarrow\dfrac{4^8-4^x}{4^{x+8}}=0\Rightarrow4^8-4^x=0\left(4^{x+8}>0\right)\Rightarrow4^x=4^8\Rightarrow x=8\)
a) 5x+x+1=\(\dfrac{125}{25}\)
\(\leftrightarrow\) 52x+1 =51
\(\leftrightarrow\) 2x+1=1
\(\leftrightarrow\)2x=0
\(\leftrightarrow\) x=0
\(70-5\left(x-3\right)=45\)
\(5\left(x-3\right)=25\)
\(x-3=5\)
\(x=8\)
5.(x-3)=15
x-3=15:5
x-3=3
x=3+3
x=6
ko hieu phan duoi