a) 5x + 5x+2 = 650
b) 3x-1 + 5.3x-1 = 162
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,5^x+5^{x+2}=650\\ \Rightarrow a,5^x+5^x.25=650\\ \Rightarrow26.5^x=650\\ \Rightarrow5^x=25\\ \Rightarrow5^x=5^2\\ \Rightarrow x=2\)
\(b,3^{x.1}+5.3^{x.1}=162\\ \Rightarrow3^x+5.3^x=162\\ \Rightarrow6.3^x=162\\ \Rightarrow3^x=27\\ \Rightarrow3^x=3^3\\ \Rightarrow x=3\)
a)\(f\left(x\right)=\left(3x+4\right)\cdot\left(5x-1\right)+\left(5x+2\right)\cdot\left(1-3x\right)+2\)
\(=15x^2-3x+20x-4+5x-15x^2+2-6x+2\)
\(=16x\)
b)\(g\left(x\right)=\left(5x-1\right)\cdot\left(2x+3\right)-3\cdot\left(3x-1\right)\)
\(=10x^2+15x-2x-3-9x+3\)
\(=10x^2+4x\)
a, Ta có:
\(f\left(x\right)=0\)
\(\Rightarrow\left(3x+4\right)\left(5x-1\right)+\left(5x+2\right)\left(1-3x\right)+2=0\)
\(\Rightarrow15x^2-3x+20x-4+5x-15x^2+2-6x+2=0\)
\(\Rightarrow16x=0-2+4\Rightarrow16x=2\Rightarrow x=\dfrac{1}{8}\)
Vậy nghiệm của đa thức f(x) là \(x=\dfrac{1}{8}\).
b,Ta có:
\(g\left(x\right)=0\)
\(\Rightarrow\left(5x-1\right)\left(2x+3\right)-3\left(3x-1\right)=0\)
\(\Rightarrow10x^2+15x-2x-3-9x+3=0\)
\(\Rightarrow10x^2+4x=0\)
\(\Rightarrow2x.\left(5x+2\right)=0\Rightarrow x.\left(5x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\5x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{2}{5}\end{matrix}\right.\)
Vậy.................
Chúc bạn học tốt!!!
a) \(9x^2-1=\left(3x-1\right)\left(5x+8\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)\left(5x+8\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(3x+1-5x-8\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(-2x-7\right)=0\)
\(TH_1:3x-1=0\)
\(\Leftrightarrow x=\dfrac{1}{3}\)
\(TH_2:-2x-7=0\)
\(\Leftrightarrow x=-\dfrac{7}{2}\)
Vậy pt có tập nghiệm \(S=\left\{\dfrac{1}{3};-\dfrac{7}{2}\right\}\)
b) \(2x^3-5x^2+3x=0\)
\(\Leftrightarrow2x^3-2x^2-3x^2+3x=0\)
\(\Leftrightarrow2x^2\left(x-1\right)-3x\left(x-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(2x-3\right)=0\)
\(TH_1:x=0\)
\(TH_2:x-1=0\)
\(\Leftrightarrow x=1\)
\(TH_3:2x-3=0\)
\(\Leftrightarrow x=\dfrac{3}{2}\)
Vậy pt có tập nghiệm \(S=\left\{0;1;\dfrac{3}{2}\right\}\)
c) \(9x^2-16-x\left(3x+4\right)=0\)
\(\Leftrightarrow\left(9x^2-16\right)-x\left(3x+4\right)=0\)
\(\Leftrightarrow\left(3x-4\right)\left(3x+4\right)-x\left(3x+4\right)=0\)
\(\Leftrightarrow\left(3x+4\right)\left(2x-4\right)=0\)
\(TH_1:3x+4=0\)
\(\Leftrightarrow x=-\dfrac{4}{3}\)
\(TH_2:2x-4=0\)
\(\Leftrightarrow x=2\)
Vậy pt có tập nghiệm \(S=\left\{-\dfrac{4}{3};2\right\}\)
d) \(\dfrac{5x+4}{3}-1=\dfrac{3x-2}{4}\)
\(\Leftrightarrow\dfrac{20x+16}{12}-\dfrac{12}{12}=\dfrac{9x-6}{12}\)
\(\Rightarrow20x+16-12=9x-6\)
\(\Leftrightarrow20x-9x=-6-16+12\)
\(\Leftrightarrow11x=-10\)
\(\Leftrightarrow x=-\dfrac{10}{11}\)
Vậy pt có nghiệm duy nhất \(x=-\dfrac{10}{11}\)
a) Ta có: \(9x^2-1=\left(3x-1\right)\left(5x+8\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)=\left(3x-1\right)\left(5x+8\right)\)
\(\Leftrightarrow3x+1=5x+8\)
\(\Leftrightarrow3x-5x=8-1\)
\(\Leftrightarrow-2x=7\)
\(\Leftrightarrow x=\dfrac{-7}{2}\)
Vậy \(X=\dfrac{-7}{2}\)
b) Ta có: \(2x^3-5x^2+3x=0\)
\(\Leftrightarrow x\left(2x^2-5x+3\right)=0\)
\(\Leftrightarrow x\left[\left(2x^2-2x\right)-\left(3x-3\right)\right]=0\)
\(\Leftrightarrow x\left(x-1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\2x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy \(x=1\) hoặc \(x=0\) hoặc \(x=\dfrac{3}{2}\)
c) \(9x^2-16-x\left(3x+4\right)=0\)
\(\Leftrightarrow9x^2-16-3x^2-4x=0\)
\(\Leftrightarrow6x^2-4x-16=0\)
\(\Leftrightarrow2\left(3x^2-2x-8\right)=0\)
\(\Leftrightarrow3x^2-6x+4x-8=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-4}{3}\end{matrix}\right.\)
Vậy \(x=2\) hoặc \(x=\dfrac{-4}{3}\)
d) \(\dfrac{5x+4}{3}-1=\dfrac{3x-2}{4}\)
\(\Leftrightarrow\dfrac{20x+16}{12}-\dfrac{12}{12}=\dfrac{9x-6}{12}\)
\(\Leftrightarrow20x+16-12=9x-6\)
\(\Leftrightarrow20x+16-12-9x+6=0\)
\(\Leftrightarrow11x+10=0\)
\(\Leftrightarrow x=\dfrac{-10}{11}\)
Vậy \(x=\dfrac{-10}{11}\)
b) PT \(\Leftrightarrow15x\left(5x+3\right)-35\left(5x+3\right)=0\)
\(\Leftrightarrow\left(15x-35\right)\left(5x+3\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{3}{5};\dfrac{7}{3}\right\}\)
c) PT \(\Leftrightarrow\left(2-3x\right)\left(x-11\right)+\left(2-3x\right)\left(2-5x\right)=0\)
\(\Leftrightarrow\left(2-3x\right)\left(-9-4x\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{9}{4}\end{matrix}\right.\)
Vậy \(S=\left\{\dfrac{2}{3};-\dfrac{9}{4}\right\}\)
a)(x-1)(5x+3)=(3x-8)(x-1)
\(\Leftrightarrow\)(x-1)(5x+3)-(3x-8)(x-1)=0
\(\Leftrightarrow\left(x-1\right)\left(5x-3-3x+8\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-5\right)=0\)
\(\left[{}\begin{matrix}x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{5}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{1;\dfrac{5}{2}\right\}\)
a: Ta có: \(3x\left(3x-1\right)-\left(3x+1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow9x^2-3x-9x^2+1=0\)
\(\Leftrightarrow3x=1\)
hay \(x=\dfrac{1}{3}\)
b: Ta có: \(x^2-5x+25-5x=0\)
\(\Leftrightarrow\left(x-5\right)^2=0\)
\(\Leftrightarrow x-5=0\)
hay x=5
a: \(=2x^3:\dfrac{-3}{2}x+4x:\dfrac{3}{2}x-5:\dfrac{3}{2}\)
=-4/3x^2+8/3-10/3
=-4/3x^2-2/3
d: \(\dfrac{3x^3-5x+2}{x-3}=\dfrac{3x^3-9x^2+9x^2-27x+22x-66+68}{x-3}\)
\(=3x^2+9x+22+\dfrac{68}{x-3}\)
a) 5^x + 5^x+2 = 650
<=> 5^x. (1+5^2)= 650
<=> 5^x. 26= 650
<=> 5^x= 25
=> x= 2
b) 3^x-1 + 5.3^x-1 = 162
<=> 3^x-1. (1+5)= 162
<=> 3^x+1. 6= 162
<=> 3^x+1= 27
=> x+1= 3
=> x= 2