K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, ta có \(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}\)

                  \(\frac{1}{3}\)\(\frac{\sin\alpha}{\cos\alpha}\)

                    \(\cos\alpha\)= 3 \(\sin\alpha\)

ta có \(\frac{\cos\alpha+\sin\alpha}{\cos\alpha-\sin\alpha}\)\(\frac{3\sin\alpha+\sin\alpha}{3\sin\alpha-\sin\alpha}\)\(\frac{4\sin\alpha}{2\sin\alpha}\)\(2\)

#mã mã#

a, ta có \(\cos^2\alpha\)+  \(\sin^2\alpha\)= 1

                  1/5 + \(\cos^2\alpha\)= 1

                               \(\cos^2\alpha\)= 4/5

\(4\cos^2\alpha\)+6 \(\sin^2\alpha\)= 4 . 4/5 + 6.1/5=22/5

b, \(\sin\alpha\)= 2/3 

\(\sin^2\alpha\)= 4/9

\(\cos^2\alpha=\frac{5}{9}\)

\(5\cos^2\alpha+2\sin^2=\frac{5.5}{9}+\frac{2.4}{9}=\frac{33}{9}\)

#mã mã#

Câu 1: 

Ta có: \(\cos\left(90^0-\alpha\right)=\sin\alpha\)

\(\Leftrightarrow\sin\alpha=1:\sqrt{\dfrac{1^2+2^2}{1}}=1:\sqrt{5}=\dfrac{\sqrt{5}}{5}\)

Câu 2: 

a) \(\cos\alpha=\sqrt{1-\sin^2\alpha}=\sqrt{1-\dfrac{16}{25}}=\dfrac{3}{5}\)

\(\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{4}{5}:\dfrac{3}{5}=\dfrac{4}{3}\)

12 tháng 9 2023

1) \(cot\alpha=\sqrt[]{5}\Rightarrow tan\alpha=\dfrac{1}{\sqrt[]{5}}\)

\(C=sin^2\alpha-sin\alpha.cos\alpha+cos^2\alpha\)

\(\Leftrightarrow C=\dfrac{1}{cos^2\alpha}\left(tan^2\alpha-tan\alpha+1\right)\)

\(\Leftrightarrow C=\left(1+tan^2\alpha\right)\left(tan^2\alpha-tan\alpha+1\right)\)

\(\Leftrightarrow C=\left(1+\dfrac{1}{5}\right)\left(\dfrac{1}{5}-\dfrac{1}{\sqrt[]{5}}+1\right)\)

\(\Leftrightarrow C=\dfrac{6}{5}\left(\dfrac{6}{5}-\dfrac{\sqrt[]{5}}{5}\right)=\dfrac{6}{25}\left(6-\sqrt[]{5}\right)\)

1: \(cota=\sqrt{5}\)

=>\(cosa=\sqrt{5}\cdot sina\)

\(1+cot^2a=\dfrac{1}{sin^2a}\)

=>\(\dfrac{1}{sin^2a}=1+5=6\)

=>\(sin^2a=\dfrac{1}{6}\)

\(C=sin^2a-sina\cdot\sqrt{5}\cdot sina+\left(\sqrt{5}\cdot sina\right)^2\)

\(=sin^2a\left(1-\sqrt{5}+5\right)=\dfrac{1}{6}\cdot\left(6-\sqrt{5}\right)\)

2: tan a=3

=>sin a=3*cosa 

\(1+tan^2a=\dfrac{1}{cos^2a}\)

=>\(\dfrac{1}{cos^2a}=1+9=10\)
=>\(cos^2a=\dfrac{1}{10}\)

\(B=\dfrac{3\cdot cosa-cosa}{27\cdot cos^3a+3\cdot cos^3a+2\cdot3\cdot cosa}\)

\(=\dfrac{2\cdot cosa}{30cos^3a+6cosa}=\dfrac{2}{30cos^2a+6}\)

\(=\dfrac{2}{3+6}=\dfrac{2}{9}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Trong Hình 5, M là điểm biểu diễn của góc lượng giác \(\alpha \) trên đường tròn lượng giác. Ta có:

OK = MH = \(\sin \alpha \)

OH = KM = \(\cos \alpha \)

\(\begin{array}{l}O{M^2} = O{H^2} + M{H^2}\\ \Rightarrow 1 = {\sin ^2}\alpha  + {\cos ^2}\alpha \end{array}\)

b) \(1 + {\tan ^2}\alpha  = \frac{{{{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} + \frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{1}{{{{\cos }^2}\alpha }}\)