Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA, trên tia BA lấy điểm F sao cho BF = BC. Kẻ tia BD là tia phân giác của góc ABC (D thuộc AC). Chứng minh rằng:
a) ΔABD = ΔEBD từ đó suy ra AD = ED.
b) BD là đường trung trực của đoạn thẳng AE và AD < DC.
c) Ba điểm E, D, F thẳng hàng.
GT, KL và vẽ hình nhé...
Đọc tiếp
Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA, trên tia BA lấy điểm F sao cho BF = BC. Kẻ tia BD là tia phân giác của góc ABC (D thuộc AC). Chứng minh rằng:
a) ΔABD = ΔEBD từ đó suy ra AD = ED.
b) BD là đường trung trực của đoạn thẳng AE và AD < DC.
c) Ba điểm E, D, F thẳng hàng.
GT, KL và vẽ hình nhé :0
ΔABC vuông tại A
\(E\in BC;F\in BA\)
BE=BA; BF=BC
BD là phân giác của góc ABC; \(D\in AC\)
a: ΔABD=ΔEBD
DA=DE
b: BD là đường trung trực của AE
AD<DC
c: E,D,F thẳng hàng
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
=>DA=DE
b: Ta có: BA=BE
=>B nằm trên đường trung trực của AE(1)
Ta có: DA=DE
=>D nằm trên đường trung trực của AE(2)
Từ (1),(2) suy ra BD là đường trung trực của AE
ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
=>\(\widehat{BED}=90^0\)
=>DE\(\perp\)BC tại E
Ta có: ΔDEC vuông tại E
=>DC>DE
mà DE=DA
nên DC>DA
=>AD<DC
c: Ta có: BA+AF=BF
BE+EC=BC
mà BA=BE và BF=BC
nên AF=EC
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
Do đó: ΔDAF=ΔDEC
=>\(\widehat{ADF}=\widehat{EDC}\)
=>\(\widehat{ADF}+\widehat{ADE}=180^0\)
=>F,D,E thẳng hàng