Cho a, b nguyên dương. Chứng minh:
Nếu (18a+13b)(4a+6b) chia hết 35 thì tích này có ít nhất một ước chính phương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thêm đk ước chính phương khác 1 sẽ chặt chẽ hơn nhé
Do (18a+13b)(4a+6b) chia hết cho 35
=> (18a+13b)(4a+6b) chia hết cho 7
<=> (18a+13b).2.(2a+3b) chia hết cho 7
Mà (2;7)=1 nên (18a+13b)(2a+3b) chia hết cho 7
Lại thấy 7 là số nguyên tố nên 18a+13b hoặc 2a+3b chia hết cho 7
Đặt A=18a+13b; B=2a+3b
Xét hiệu: 9B-A=9.(2a+3b)-(18a+13b)
= 18a+27b-18a-13b = 14b chia hết cho 7 (1)
+ Nếu A chia hết cho 7, từ (1) => 9B chia hết cho 7
Mà (9;7)=1 => B chia hết cho 7
Do đó, 2AB = (18a+13b)(4a+6b) chia hết cho 72
+ Nếu B chia hết cho 7 từ (1) => A chia hết cho 7
=> 2AB = (18a+13b)(4a+6b) chia hết cho 72
Như vậy, trong cả 2 trường hợp ta đều có (18a+13b)(4a+6b) có ít nhất 1 ước chính phương là 72 (đpcm)
Đặt tích: \(\left(16a+17b\right)\left(17a+16b\right)=P\)
\(P=\left[11\left(2a+b\right)-6\left(a-b\right)\right]\cdot\left[11\left(2a+b\right)-5\left(a-b\right)\right]\)
P chia hết cho 11 thì
Vậy, P luôn có ít nhất 1 ước chính phương (khác 1) là 112. ĐPCM
11 là số nguyên tố, (16a+17b)(17a+16b) chia hết cho 11 => có ít nhất một thừa số chia hết cho 11, không giãm tính tính tổng quát, giả sử (16a+17b) chia hết cho 11
ta cm (17a+16b) cũng chia hết cho 11, thật vậy:
16a + 17b chia hết cho 11 => 2(16a + 17b) chia hết cho 11
=> 33(a+b) + b -a chia hết cho 11 => b-a chia hết cho 11
=> a-b chia hết cho 11
Ta có: 2(17a+16b) = 33(a+b) + a-b chia hết cho 11
do 2 và 11 là hai số nguyên tố => 17a+16b chia hết cho 11
Vậy (16a+17b)(17a+16b) chia hết cho 11.11 = 121 = 11^2 là scp => đpcm
Đề cho là (16a+17b) + (16b+17a) chia hết cho 11 chứ đâu phải là (16a+17b) . (16b+17a) chia hết cho 11
Dãy số có 2 chữ số chia hết cho 3 là:[12,15,....,99]
Khoảng cách của từng số hạng là 3
Số số hạng là: (99-12):3+1=30(số)
Vậy có 30 số có 2 chữ số chia hết cho 3