K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6

loading...   ∆ABC có BE là đường phân giác (gt)

loading...loading...loading...  ∆ABC vuông tại A (gt)

⇒ BC² = AB² + AC² (Pythagore)

⇒ BC² - AB² = AC²

= (3 + 5)²

= 64

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

loading...loading...loading...loading...  Ta có:

BC² = AB² + AC² (Pythagore)

= 6² + 64

= 100

⇒ BC = 10

21 tháng 6

vì BE là đường phân giác của tam giác ABC nên ta có:

\(\dfrac{AE}{EC}=\dfrac{AB}{BC}=\dfrac{3}{5}\)

\(BC=\dfrac{5}{3}AB\)

áp dụng định lý pythagore vào tam giác ABC ta được:

\(AC^2=AB^2+BC^2\)

tổng độ dài đoạn AC là: 3 + 5 = 8

\(AB^2+BC^2=8^2\\ AB^2+\left(\dfrac{5}{3}AB\right)^2=64\\ AB^2+\dfrac{25}{9}AB^2=64\\ AB^2\cdot\left(1+\dfrac{25}{9}\right)=64\\ AB^2\cdot\dfrac{34}{9}=64\\ AB^2=64:\dfrac{34}{9}=64\cdot\dfrac{9}{34}\\ AB^2=\dfrac{576}{34}\\ AB=\sqrt{\dfrac{576}{34}}\text{≈}4,11\)

độ dài đoạn BC là:

BC² = AC² - AB²

BC² = 64 - 16,8921

BC² = 47,1079

BC = \(\sqrt{47,1079}\) ≈ 6,86

VẬY AB = 4,11; BC  =6,86

3 tháng 4 2021

BE là đường phân giác
=> AE/EC=AB/BC
=> AB=AE.BC/EC=6AE/3=2EC
có AB^2+AC^2=BC^2
<=>4AE^2+AE^2+2AE.AC+EC^2=BC^2
<=>5AE^2+6AE+9=36
<=> 5AE^2+6AE-27=0
<=> [AE=1,8
       [AE=-3(loại)
=> AC=4,8 cm
      AB=3,6 cm

3 tháng 4 2021

A B C E 3 6

Xét tam giác ABC vuông tại A , BE là đường phân giác 

\(\Rightarrow\frac{AB}{BC}=\frac{AE}{EC}\)mà : \(AB^2+AC^2=BC^2\Rightarrow AB^2=BC^2-AC^2\Rightarrow AB=\sqrt{36-AC^2}\)

\(AE=AC-EC=AC-3\)

\(\Rightarrow\frac{\sqrt{36-AC^2}}{6}=\frac{AC-3}{3}\)

\(\Rightarrow\frac{36-AC^2}{36}=\frac{\left(AC-3\right)^2}{9}\Rightarrow AC=\frac{24}{5}\)

Áp dụng định lí Py ta go ta có : 

\(AB^2+AC^2=BC^2\Rightarrow AB^2=BC^2-AC^2=36-\frac{576}{25}=\frac{324}{25}\)

\(\Rightarrow AB=\frac{18}{5}\)

28 tháng 10 2023

1. ΔABE = ΔHBE

Xét ΔABE và ΔHBE, ta có :

\widehat{BAE} =\widehat{BHE} =90^0 (gt)

\widehat{B_1} =\widehat{B_2}( BE là đường phân giác của góc HBA).

BE là cạnh chung.

=> ΔABE = ΔHBE

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

3. EK = EC

Xét ΔKAE và ΔCHE, ta có :

\widehat{KAE} =\widehat{CHE} =90^0 (gt)

EA = EH (cmt)

\widehat{E_1} =\widehat{E_2}( đối đỉnh).

=> ΔKAE và ΔCHE

=> EK = EC

4. EC > AC

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

14 tháng 8 2016

Xét ΔABE và ΔHBE có:

   \(\widehat{BAE}=\widehat{BHE}=90\) (gt)

   BE:cạnh chung

   \(\widehat{ABE}=\widehat{HBE}\left(gt\right)\)

=> ΔABE =ΔHBE(cạnh huyền-góc nhọn)

b) Vì ΔABE=ΔHBE(cmt)

=> AB=BH ; AE=EH

=> B,E \(\in\) đường trung trực của đoạn thẳng AH

=>BE là đường trung trực của đoạn thẳng AH

c) Xét ΔAEK và ΔHEC có:

      \(\widehat{KAE}=\widehat{CHE}=90\left(gt\right)\)

     AE=EH(cmt)

      \(\widehat{AEK}=\widehat{HEC}\)

=>ΔAEK=ΔHEC(g.c.g)

=>EK=EC

d) Xét ΔEHC vuông tại H(gt)

=> HE<EC

Mà: HE=AE(cmt)

=>AE<EC

d) Xét ΔHKC có:

KH,CA là hai đường cao

=> E là trực tâm của ΔBKC

=>BE là đường cao

=> AE vuông góc KC

15 tháng 8 2016

a)

xét 2 tam giác vuông ABE và HBE có:

BE(chung)

góc ABE= góc CBE(gt)

=> ΔABE=ΔHBE(CH-GN)

b)

gọi giao của BE và AH là F 

xét ΔABF và ΔHBF có:

AB=HB(theo câu a, ΔABE=ΔHBE)

BF(chung)

góc ABE=góc HBE(gt)

=> ΔABF=ΔHBF(c.g.c)

=>\(\begin{cases}FA=FH\\\widehat{AFB}=\widehat{BFH}=180^o:2=90^o\end{cases}\)

=> BE là đường trung trực của AH

c)

xét ΔAEK và ΔHEC có:

EA=EH(theo câu a, ΔABE=ΔHBE)

góc KAE=góc EHC=90º(gt)

góc AEK=góc CEH(2 góc đối đỉnh)

=>ΔAEK=ΔHEC(g.c.g)

=>EK=EC

d)

ta có ΔAEK vuông tại A

=> EK>AE

mà EK=EC(theo câu c)

=> AE<EC

e)

theo câu a, ta có: ΔABE=ΔHBE(CH-GN)

=>AB=HB

theo câu c, ta có: ΔAEK=ΔHEC(g.c.g)

=> AK=HC

ta có: KB=KA+AB

CB=CH+HB

=>KB=CB

=>ΔKBC cân tại B 

ta có:ΔKCB cân tại B có BE là đường phân giác

=>BE đồng thời là đường cao của ΔKBC

=>BE_|_KC 

f)

áp dụng định lí py-ta-go ta có;

\(AC^2=BC^2-AB^2=5^2-3^2=25-9=16\)

\(AC=\sqrt{16}=4\left(cm\right)\)

theo câu e; ta có ΔKBC cân tại B

=> BC=BK=5cm

AK=BC-AB=5cm-3cm=2cm

áp dụng định lí py-ta-go ta có:

\(KC^2=AK^2+AC^2=4^2+2^2=16+4=20\)

\(KC=\sqrt{20}\left(cm\right)\)

14 tháng 8 2016

a) Tam giác ABE và tam giác HBE có góc A = góc H = 90độ, góc ABE = góc HBE, cạnh huyền BE chung nên hai tam giác đó bằng nhau. 
b) từ hai tam giác trên bằng nhau suy ra BA = BH, EA = EH suy ra B và E cùng thuộc đường trung trực của AH suy ra BE là đường trung trực của AH. 
c) c/m hai tam giác vuông AKE và HCE bằng nhau theo trường hợp góc cạnh góc. suy ra EK = EC. 
d) tam giác AKE vuông tại A nên AE<EK mà EK = EC nên AE < EC.

14 tháng 8 2016

Bài này cực dễ luôn

31 tháng 1 2018

ΔEHC vuông tại H có EH < EC (cạnh huyền là lớn nhất trong tam giác vuông)

mà EH = AE (câu b) nên AE < EC.