cho tam giác abc cân tại a, m là trung điểm bc kẻ me ⊥ ab , mf ⊥ ac a) chứng minh tam giác abm=acm b) chứng ming aef cân tại a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Xét tam giác ABC vuông cân tại A có:
AO là trung tuyến ứng với cạnh huyền BC (O là trung điểm BC)
=>AO=BO=CO=\(\dfrac{1}{2}\)BC ; AO⊥BC tại O.
- Ta có: \(\widehat{EAF}=\widehat{AEM}=\widehat{AFM}=90^0\) nên AEMF là hình chữ nhật.
=> AE=MF ; AB//MF
- Ta có: \(\widehat{ABC}=\widehat{FMC}=45^0\) (AB//MF, tam giác ABC vuông cân tại A).
Mà tam giác MFC vuông tại F (MF⊥AC tại F) nên tam giác MFC vuông cân tại F.
=>MF=CF=AE.
- Ta có: Tam giác AOB vuông tại O (AO⊥BC tại O) mà AO=BO (cmt) nên tam giác AOB vuông cân tại O.
- Xét tam giác OAE và tam giác OCF có:
OA=OC (cmt)
\(\widehat{OCF}=\widehat{OAE}=45^0\) (tam giác ABC vuông cân tại A, tam giác AOB vuông cân tại O).
AE=CF (cmt)
=>Tam giác OAE= Tam giác OCF (c-g-c)
=> OE=OF (2 cạnh tương ứng).
\(\widehat{AOE}=\widehat{COF}\) (2 góc tương ứng) mà \(\widehat{COF}+\widehat{AOF}=90^0\) (AO⊥BC tại O).
nên \(\widehat{AOE}+\widehat{AOF}=90^0\) =>\(\widehat{EOF}=90^0\) =>Tam giác OEF vuông tại O mà OE=OF (cmt) nên tam giác OEF vuông cân tại O.
Số cây cam là:
120:(2+3)x2=48(cây)
Số cây xoài là:
120:(5+1)=20(cây)
Số cây chanh là:
120-(48+20)=52(cây)
Đáp số:52 cây
P/s cho tớ xin lỗi nha nếu bạn nào thì sau này mình sẽ ủng hộ lại ok
a: Xét ΔABC có
M là trung điểm của BC
ME//AC
Do đó: E là trung điểm của AB
Xét ΔBAC có
M là trung điểm của BC
MF//AB
Do đó: F là trung điểm của AC
b: Xét ΔABC có
E là trung điểm của AB
F là trung điểm của AC
Do đó: EF là đường trung bình của ΔABC
Suy ra: EF//BC và \(EF=\dfrac{BC}{2}\)
hay BC=2EF
Xét \(\Delta BCA:\)M là trung điểm BC ; \(ME\text{//}BC\left(E\in AB\right)\)
\(\Rightarrow ME\)là đường trung bình \(\Delta BCA\)
\(\Rightarrow E\) là trung điểm AB
Chứng minh tương tự được \(F\)là trung điểm AC
\(\Rightarrow EF\)là đường trung bình \(\Delta ABC\)
\(\Rightarrow EF\text{//}BC\)
Do đó BCFE là hình thang có \(\widehat{B}=\widehat{C}\)( \(\Delta ABC\)cân tại A) là 2 góc kề đáy BC bằng nhau nên là hình thang cân.
Vậy ...
a) Xét △AMB và △AMC có:
AB = AC (△ABC cân)
AM: chung
MB = MC (M: trung điểm BC)
=> △AMB = △AMC (c.c.c)
=> AMB = AMC (2 góc tương ứng)
Mà AMB + AMC = 180o (kề bù)
=> 2AMB = 2AMC = 180o
=> AMB = AMC = 180o : 2 = 90o
=> AM \(\perp\)BC (đpcm)
b) Xét △MBE và MCF có:
MEB = MFC ( = 90o)
MB = MC (M: trung điểm BC)
EBM = FCM (△ABC cân)
=> △MBE = △MCF (ch-gn)
=> ME = MF (2 cạnh tương ứng)
=> △EMF cân tại M (đpcm)
c) Vì △MBE và △MCF => BE = CF
Ta có:
AB = AE + EB
AC = AF + FC
Mà AB = AC (△ABC cân) và EB = FC (cmt)
=> AE = AF
=> △AEF cân tại A
=> AEF = \(\frac{180^o-A}{2}\)(1)
Vì △ABC cân tại A
=> ABC = \(\frac{180^o-A}{2}\)(2)
Từ (1) và (2) => AEF = ABC
Mà hai góc này ở vị trí so le trong
=> EF // BC (đpcm)
a, Vì Tam giác `ABC` cân tại A `=> AB = AC ;`\(\widehat{B}=\widehat{C}\)
Xét Tam giác `AMB` và Tam giác `AMC` có:
`AM chung`
\(\widehat{B}=\widehat{C}\) `(CMT)`
`MB = MC (g``t)`
`=>` Tam giác `AMB =` Tam giác `AMC (c-g-c)`
b, Vì Tam giác `AMB =` Tam giác `AMC (a)`
`=>` \(\widehat{EAM}=\widehat{FAM}\) (2 góc tương ứng).
Xét Tam giác `EAM` và Tam giác `FAM` có:
AM chung
\(\widehat{EAM}=\widehat{FAM}\) `(CMT)`
\(\widehat{AEM}=\widehat{AFM}=90^0\)
`=>` Tam giác `EAM =` Tam giác `FAM (ch-gn)`
`=> EA = FA` (2 cạnh tương ứng).
c, *câu này mình hơi bí bn ạ:')
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
Do đó: ΔAEM=ΔAFM
=>AE=AF
c: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
Bài làm :
a) Xét tam giác BEM và tam giác CFM
Ta có: BM = MC ( vì M là trung điểm của BC)
M là góc chung
Do đó : tam giác BEM=CFM( cạnh huyền- góc nhọn)
b) Bạn ghi chưa hết đề nên mik ko hiểu
sorry
a:
Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: ΔABM=ΔACM
=>\(\widehat{BAM}=\widehat{CAM}\)
Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó: ΔAEM=ΔAFM
=>AE=AF
=>ΔAEF cân tại A