Một cây tre cao 8m bị gãy ngang thân, ngọn cây chạm đất cách gốc 4m. Hỏi độ dài từ điểm gãy tới gốc?
#Toán lớp 7Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Một cây tre cao 9m bị gãy ngang thân, ngọn cây chạm đất cách gốc 3m. Hỏi độ dài từ điểm gãy tới gốc?
gọi CDài phần còn lại là a (m)
=> phần gãy là 9-a (m)
áp dụng ĐL py-ta-go ta có: a2 + 32 =( 9-a)2
=> a2+9 = (9-a).(9-a)
a2+9 = 81 - 18a +a2
=> 18a = 81-9 = 72=> a= 72:18 = 4 m
vậy điểm gãy cách gốc 4 m
duyệt đi
Điểm gãy cách gốc:
\(\sqrt{8^2-4^2}=4\sqrt{3}\left(m\right)\)
Gọi khoảng cách từ điểm gãy đến đất là x (m)
Giờ cây tre và mặt đất sẽ tạo thành tam giác vuông có 1 cạnh góc vuông là x (m), cạnh huyền là (8-x) và cạnh góc vuông còn lại là 4m
Theo Pitago ta có: (8-x)2=x2+16
<=> 64-8x+x2=x2+16 <=> 8x=64-16 <=> 8x=48
=> x=6 (m)
Đáp số: Điểm gãy cách đất 6 (m)
Giả sử AB là độ cao của cây tre, C là điểm gãy.
Đặt AC = x CB = CD = 8 – x.
Vì ∆ ACD vuông tại A
Vậy điểm gãy cách gốc cây 3,23m
Đáp án cần chọn là: B
Ta cần tính khoảng cách từ điểm gẫy đề gốc cây tức là đoạn DB với đó C chính là điểm bị gẫy
Mà: \(AB=AD+DB\Rightarrow AD=AB-BD=8-DB\)
Và do AD là phần thân trên lúc chưa gẫy và DC là phân thân trên lúc đã gẫy nên
\(AD=DC=8-DB\)
Xét tam giác DBC vuông tại B áp dụng định lý Py-ta-go ta có:
\(DB^2+BC^2=CD^2\)
\(\Leftrightarrow DB^2+3,5^2=\left(8-DB^2\right)\)
\(\Leftrightarrow DB^2+12,25=64-16DB+DB^2\)
\(\Leftrightarrow DB^2-DB^2+16DB=64-12,25\)
\(\Leftrightarrow16DB=51,25\)
\(\Leftrightarrow DB=\dfrac{51,25}{16}\approx3,23\left(m\right)\)
Vậy khoảng cách từ điểm gẫy đến gốc dài 3,23 m
gọi k/c từ điểm gãy đến ngọn cây là x . Vì cây cau vuông góc với mặt đất nên cây cau gãy tạo với mặt đất hình tam giác vuông =>khoảng cách từ gốc đến điểm gãy và k/c từ ngọn cây đến góc là cạnh góc vuông và x là cạnh huyền Định Lí PTG ta có : 3^2+4^2=x^2 =>x=5 => chiều cao cây = 5+4=9m
Điểm gãy cách gốc \(\sqrt{8^2+3,5^2}=\dfrac{\sqrt{305}}{2}\approx8,73\left(m\right)\)
Giả sử AB là độ cao của cây tre, C là điểm gãy.
Đặt AC = x (0 < x < 9) => CB = CD = 9 – x.
Vì ∆ ACD vuông tại A
Vậy điểm gãy cách gốc cây 4m
Đáp án cần chọn là: C
Lời giải:
Ký hiệu gốc cây là $A$, ngọn cây bị gãy là $B$, điểm gãy là $C$. Ta có:
$AC+CB=8(1)$ (m)
$AB=4$ (m)
Áp dụng định lý Pitago:
$AC^2+AB^2=BC^2$
$\Rightarrow AC^2+4^2=BC^2$
$\Rightarrow BC^2-AC^2=16$
$\Rightarrow (BC-AC)(BC+AC)=16$
$\Rightarrow (BC-AC).8=16\Rightarrow BC-AC=2(2)$
Từ $(1); (2)\Rightarrow BC=(8+2):2=5; AC=(8-2):2=3$ (m)
Vậy độ dài từ điểm gãy tới gốc là $AC=3$ m
Hình vẽ: