K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
6 tháng 6 2024

f(1)=4.1+1

=4+1=5

(B)

6 tháng 6 2024

F(1) = 4,1 + 1

= 4 + 1 

= 5

Chọn câu B bạn nhé

22 tháng 4 2020

Bài 1 :

Với x = 1 thì y = 4.1 = 4

Ta được \(A\left(1;4\right)\) thuộc đồ thị hàm số y = f(x) = 4x

Đường thẳng OA là đồ thị hàm số y = f(x) = 4x

y x 4 3 2 1 1 2 3 4 -1 -2 -3 -4 y=4x A

a) Ta có : \(f\left(2\right)=4\cdot2=8\)

\(f\left(-2\right)=4\cdot\left(-2\right)=-8\)

\(f\left(4\right)=4\cdot4=16\)

\(f\left(0\right)=4\cdot0=0\)

b) +) y = -1 thì \(4x=-1\) => \(x=-\frac{1}{4}\)

+) y = 0 thì 4x = 0 => x = 0

+) y = 2,5 thì 4x = 2,5 => \(4x=\frac{5}{2}\)=> x = \(\frac{5}{8}\)

Bài 2 :

a) Vẽ tương tự như bài 1 

b) Thay \(M\left(-2,6\right)\)vào đths y = -3x ta có :

y =(-3)(-2) = 6

=> Điểm M thuộc đths y = -3x

c) Thay tung độ của P là 5 vào đồ thị hàm số y = -3x ta có :

=> 5 = -3x => \(x=-\frac{5}{3}\)

Vậy tọa độ của điểm P là \(P\left(-\frac{5}{3};5\right)\)

Câu 1: 

a) 

\(y=f\left(x\right)=2x^2\)-5-3035
f(x)501801850

b) Ta có: f(x)=8

\(\Leftrightarrow2x^2=8\)

\(\Leftrightarrow x^2=4\)

hay \(x\in\left\{2;-2\right\}\)

Vậy: Để f(x)=8 thì \(x\in\left\{2;-2\right\}\)

Ta có: \(f\left(x\right)=6-4\sqrt{2}\)

\(\Leftrightarrow2x^2=6-4\sqrt{2}\)

\(\Leftrightarrow x^2=3-2\sqrt{2}\)

\(\Leftrightarrow x=\sqrt{3-2\sqrt{2}}\)

hay \(x=\sqrt{2}-1\)

Vậy: Để \(f\left(x\right)=6-4\sqrt{2}\) thì \(x=\sqrt{2}-1\)

HQ
Hà Quang Minh
Giáo viên
12 tháng 9 2023

a) Ta có:

\(f\left( {\dfrac{1}{5}} \right) = \dfrac{5}{{4.\dfrac{1}{5}}} = \dfrac{5}{{\dfrac{4}{5}}} = 5:\dfrac{4}{5} = 5.\dfrac{5}{4} = \dfrac{{25}}{4};\)

\(f\left( { - 5} \right) = \dfrac{5}{{4.\left( { - 5} \right)}} = \dfrac{5}{{ - 20}} = \dfrac{{ - 1}}{4};\)

\(f\left( {\dfrac{4}{5}} \right) = \dfrac{5}{{4.\dfrac{4}{5}}} = \dfrac{5}{{\dfrac{{16}}{5}}} = 5:\dfrac{{16}}{5} = 5.\dfrac{5}{{16}} = \dfrac{{25}}{{16}}\)

b) Ta có:

\(f\left( { - 3} \right) = \dfrac{5}{{4.\left( { - 3} \right)}} = \dfrac{5}{{ - 12}} = \dfrac{{ - 5}}{{12}};\)

\(f\left( { - 2} \right) = \dfrac{5}{{4.\left( { - 2} \right)}} = \dfrac{5}{{ - 8}} = \dfrac{{ - 5}}{8};\)

\(f\left( { - 1} \right) = \dfrac{5}{{4.\left( { - 1} \right)}} = \dfrac{5}{{ - 4}} = \dfrac{{ - 5}}{4};\)

\(f\left( { - \dfrac{1}{2}} \right) = \dfrac{5}{{4.\left( { - \dfrac{1}{2}} \right)}} = \dfrac{5}{{\dfrac{{ - 4}}{2}}} = \dfrac{5}{{ - 2}} = \dfrac{{ - 5}}{2}\);

\(f\left( {\dfrac{1}{4}} \right) = \dfrac{5}{{4.\dfrac{1}{4}}} = \dfrac{5}{{\dfrac{4}{4}}} = \dfrac{5}{1} = 5\);

\(f\left( 1 \right) = \dfrac{5}{{4.1}} = \dfrac{5}{4}\);

\(f\left( 2 \right) = \dfrac{5}{{4.2}} = \dfrac{5}{8}\)

Ta có bảng sau:

\(x\)

–3

–2

–1

\( - \dfrac{1}{2}\)

\(\dfrac{1}{4}\)

1

2

\(y = f\left( x \right) = \dfrac{5}{{4x}}\)

\(\dfrac{{ - 5}}{{12}}\)

\(\dfrac{{ - 5}}{8}\)

\(\dfrac{{ - 5}}{4}\)

\(\dfrac{{ - 5}}{2}\)

5

\(\dfrac{5}{4}\)

\(\dfrac{5}{8}\) 

24 tháng 9 2023

Tham khảo:

a) Ta có: \(f(0) = a{.0^2} + b.0 + c = 1 \Rightarrow c = 1.\)

Lại có:

 \(f(1) = a{.1^2} + b.1 + c = 2 \Rightarrow a + b + 1 = 2\)

\(f(2) = a{.2^2} + b.2 + c = 5 \Rightarrow 4a + 2b + 1 = 5\)

Từ đó ta có hệ phương trình \(\left\{ \begin{array}{l}a + b + 1 = 2\\4a + 2b + 1 = 5\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}a + b = 1\\4a + 2b = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 0\end{array} \right.\)(thỏa mãn điều kiện \(a \ne 0\))

Vậy hàm số bậc hai đó là \(y = f(x) = {x^2} + 1\)

b) Tập giá trị \(T = \{ {x^2} + 1|x \in \mathbb{R}\} \)

Vì \({x^2} + 1 \ge 1\;\forall x \in \mathbb{R}\) nên \(T = [1; + \infty )\)

Đỉnh S có tọa độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 0}}{{2.1}} = 0;{y_S} = f(0) = 1\)

Hay \(S\left( {0;1} \right).\)

Vì hàm số bậc hai có \(a = 1 > 0\) nên ta có bảng biến thiên sau:

Hàm số nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) và đồng biến trên khoảng \(\left( {0; + \infty } \right)\)

18 tháng 12 2020

a) Thay x=1 vào hàm số y=2x-1, ta được: 

\(y=2\cdot1-1=2-1=2\)

Thay x=-1 vào hàm số y=2x-1, ta được: 

\(y=2\cdot\left(-1\right)-1=-2-1=-3\)

Thay x=0 vào hàm số y=2x-1, ta được: 

\(y=2\cdot0-1=-1\)

Thay x=2 vào hàm số y=2x-1, ta được: 

\(y=2\cdot2-1=4-1=3\)

Vậy: F(1)=2; F(-1)=-3; F(0)=-1; F(2)=3

b) 

x 1 -1 0 2 y=2x-1 2 -3 -1 3

 

21 tháng 4 2020

kho the