Tìm x € N, biết :
7/9+1/3<x<43/8+1/10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{7}{9}+\dfrac{1}{3} < x < \dfrac{43}{8}+\dfrac{1}{10}\)
\(\dfrac{10}{9} < x < \dfrac{219}{40}\)
Mà \(x \in N\)
\(=>x=\){`2;3;4;5`}
\(\dfrac{7}{9}+\dfrac{1}{3}< x< \dfrac{43}{8}+\dfrac{1}{10}\)
\(\dfrac{10}{9}< x< \dfrac{219}{40}\)
Mà \(x\inℕ\)
\(\Rightarrow\dfrac{10}{9}< 2\le x\le5< \dfrac{219}{40}\)
\(\Rightarrow2\le x\le5\)
\(\Rightarrow x\in\left\{2;3;4;5\right\}\)
Vậy: \(x\in\left\{2;3;4;5\right\}\)
\(7=\dfrac{1.3+4.2+7.9+11.n}{3+2+9+n}\\ \Leftrightarrow7=\dfrac{74+11.n}{14+n}\\ \Leftrightarrow7.\left(14+n\right)=74+11.n\\ \Leftrightarrow98+7n=74+11n\\ \Leftrightarrow11n-7n=98-74\\ \Leftrightarrow4n=24\\ \Leftrightarrow n=6\)
Bài 1 :
a) \(\frac{-n}{4}=\frac{-9}{n}\Rightarrow-n^2=-36\Rightarrow n^2=36\Rightarrow n=\pm6\)
b) \(\frac{n}{4}=18\cdot n+1\Rightarrow n=\left(18n+1\right)\cdot4\)
=> n = 72n + 4
=> n - 72n = 4
=> -71n = 4 => n = \(-\frac{4}{71}\)
Mà n thuộc Z => n không thoả mãn điều kiện của đề bài :
Bài 2 :
\(\frac{x}{7}=\frac{9}{y}\Rightarrow xy=63\)
Ta có : 63 = 1.63 = 3.21 = 7.9 = 9.7 = 21.3 = 63.1 = (-1)(-63) = (-3)(-21) = (-7)(-9) = (-9)(-7) = (-21)(-3) = (-63)(-1)
Vậy (x,y) = {(1,63) ; (3,21) ; (7,9) ; (9,7) ; (21,3) ; (63,1) ; (-1,-63) ; (-3,-21) ; (-7,-9) ; (-9,-7); (-21,-3) ; (-63,-1)}
b) \(\frac{-2}{x}=\frac{y}{5}\Rightarrow xy=-10=\left(-1\right)\cdot10=\left(-2\right)\cdot5=\left(-5\right)\cdot2=\left(-10\right)\cdot1\)
Tự tìm x , y là xong
c) Cách 1 : x - y = 5 => x = 5 + y
=> \(\frac{x-4}{y-3}=\frac{5+y-4}{y-3}=\frac{4}{3}\)
=> \(\frac{y+1}{y-3}=\frac{4}{3}\)
=> \(3\left(y+1\right)=4\left(y-3\right)\)
=> 3y + 3 = 4y - 12
=> 3y + 3 - 4y + 12 = 0
=> -y + 15 = 0
=> -y = -15 => y = 15
+) x = 5 + y = 5 + 15 = 20
Cách 2 : \(\frac{x-4}{y-3}=\frac{4}{3}\)
=> 3(x - 4) = 4(y - 3)
=> 3x - 12 = 4y - 12
=> 3x - 12 - 4y + 12 = 0
=> 3x - 4y = 0 => 3x = 4y => \(\frac{x}{4}=\frac{y}{3}\)
Đặt \(\frac{x}{4}=\frac{y}{3}=k\)
=> x = 4k,y = 3k
=> x - y =4k - 3k
=> k = 5
+) x = 4k = 4.5 = 20
+) y = 3k = 3.5 = 15
Vậy x = 20,y = 15
Bài 6 :
a) \(\dfrac{625}{5^n}=5\Rightarrow\dfrac{5^4}{5^n}=5\Rightarrow5^{4-n}=5^1\Rightarrow4-n=1\Rightarrow n=3\)
b) \(\dfrac{\left(-3\right)^n}{27}=-9\Rightarrow\dfrac{\left(-3\right)^n}{\left(-3\right)^3}=\left(-3\right)^2\Rightarrow\left(-3\right)^{n-3}=\left(-3\right)^2\Rightarrow n-3=2\Rightarrow n=5\)
c) \(3^n.2^n=36\Rightarrow\left(2.3\right)^n=6^2\Rightarrow\left(6\right)^n=6^2\Rightarrow n=6\)
d) \(25^{2n}:5^n=125^2\Rightarrow\left(5^2\right)^{2n}:5^n=\left(5^3\right)^2\Rightarrow5^{4n}:5^n=5^6\Rightarrow\Rightarrow5^{3n}=5^6\Rightarrow3n=6\Rightarrow n=3\)
Bài 7 :
a) \(3^x+3^{x+2}=9^{17}+27^{12}\)
\(\Rightarrow3^x\left(1+3^2\right)=\left(3^2\right)^{17}+\left(3^3\right)^{12}\)
\(\Rightarrow10.3^x=3^{34}+3^{36}\)
\(\Rightarrow10.3^x=3^{34}\left(1+3^2\right)=10.3^{34}\)
\(\Rightarrow3^x=3^{34}\Rightarrow x=34\)
b) \(5^{x+1}-5^x=100.25^{29}\Rightarrow5^x\left(5-1\right)=4.5^2.\left(5^2\right)^{29}\)
\(\Rightarrow4.5^x=4.25^{2.29+2}=4.5^{60}\)
\(\Rightarrow5^x=5^{60}\Rightarrow x=60\)
c) Bài C bạn xem lại đề
d) \(\dfrac{3}{2.4^x}+\dfrac{5}{3.4^{x+2}}=\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{10}}\)
\(\Rightarrow\dfrac{3}{2.4^x}-\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{x+2}}-\dfrac{5}{3.4^{10}}=0\)
\(\Rightarrow\dfrac{3}{2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)+\dfrac{5}{3.4^2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)=0\)
\(\Rightarrow\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)\left(\dfrac{3}{2}+\dfrac{5}{3.4^2}\right)=0\)
\(\Rightarrow\dfrac{1}{4^x}-\dfrac{1}{4^8}=0\)
\(\Rightarrow\dfrac{4^8-4^x}{4^{x+8}}=0\Rightarrow4^8-4^x=0\left(4^{x+8}>0\right)\Rightarrow4^x=4^8\Rightarrow x=8\)
Mình chỉ làm được bài một thôi:
BÀI 1: Giải
Gọi ƯCLN(a;b)=d (d thuộc N*)
=> a chia hết cho d ; b chia hết cho d
=> a=dx ; b=dy (x;y thuộc N , ƯCLN(x,y)=1)
Ta có : BCNN(a;b) . ƯCLN(a;b)=a.b
=> BCNN(a;b) . d=dx.dy
=> BCNN(a;b)=\(\frac{dx.dy}{d}\)
=> BCNN(a;b)=dxy
mà BCNN(a;b) + ƯCLN(a;b)=15
=> dxy + d=15
=> d(xy+1)=15=1.15=15.1=3.5=5.3(vì x; y ; d là số tự nhiên)
TH 1: d=1;xy+1=15
=> xy=14 mà ƯCLN(a;b)=1
Ta có bảng sau:
x | 1 | 14 | 2 | 7 |
y | 14 | 1 | 7 | 2 |
a | 1 | 14 | 2 | 7 |
b | 14 | 1 | 7 | 2 |
TH2: d=15; xy+1=1
=> xy=0(vô lý vì ƯCLN(x;y)=1)
TH3: d=3;xy+1=5
=>xy=4
mà ƯCLN(x;y)=1
TA có bảng sau:
x | 1 | 4 |
y | 4 | 1 |
a | 3 | 12 |
b | 12 | 3 |
TH4:d=5;xy+1=3
=> xy = 2
Ta có bảng sau:
x | 1 | 2 |
y | 2 | 1 |
a | 5 | 10 |
b | 10 | 5 |
.Vậy (a;b) thuộc {(1;14);(14;1);(2;7);(7;2);(3;12);(12;3);(5;10);(10;5)}
a) (3x - 72) . 59 = 4.510
=> 3x - 49 = 4.5
=> 3x - 49 = 20
=> 3x = 69
=> x = 23
Vậy x = 23
b) 210 < 7x < 280
=> 30 < x < 40
mà x \(\inℕ\)
=> \(x\in\left\{31;32;33;34;35;36;37;38;39\right\}\)
c) x + 2 \(⋮\)x - 1
=> x - 1 + 3 \(⋮\)x - 1
Nhận thấy x - 1 \(⋮\)x - 1
=> 3 \(⋮\)x - 1
=> x - 1 \(\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
=> \(x\in\left\{1;0;4;-2\right\}\)
mà x \(\inℕ\Rightarrow x\in\left\{1;0;4\right\}\)
d) 2x + 7 \(⋮\)x + 1
=> 2(x + 1) + 5 \(⋮\)x + 1
Nhận thấy 2(x + 1) \(⋮\)x + 1
=> 5 \(⋮\)x + 1
=> x + 1 \(\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
=> \(x\in\left\{0;4\right\}\)(vì x là số tự nhiên)
b) 210 < 7x < 280
\(\Rightarrow\)7x\(\in\){ 211; 212; 213; .................; 279 }
Vì cứ cách 7 đơn vị thì có 1 số chia hết cho 7
\(\Rightarrow\)7x = 217; 224; 231; 238; 245; 252; 259; 266; 273
( Còn đâu x bạn tự tính nhé )
\(\dfrac{7}{9}+\dfrac{1}{3}< x< \dfrac{43}{8}+\dfrac{1}{10}\\ \dfrac{7}{9}+\dfrac{3}{9}< x< \dfrac{430}{80}+\dfrac{8}{80}\\ \dfrac{10}{9}< x< \dfrac{438}{80}\\ 1,1< x< 5,475\)
Mà x thuộc N
Do đó x thuộc {2;3;4;5}