K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(2m-5\right)\)

\(=\left(2m-2\right)^2-4\left(2m-5\right)\)

\(=4m^2-8m+4-8m+20\)

\(=4m^2-16m+24=4m^2-16m+16+8\)

\(=\left(2m-4\right)^2+8>0\forall m\)

=>Phương trình luôn có hai nghiệm phân biệt

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=2m-5\end{matrix}\right.\)

x1,x2 là các nghiệm của phương trình

=>\(\left\{{}\begin{matrix}x_1^2-2\left(m-1\right)x_1+2m-5=0\\x_2^2-2\left(m-1\right)x_2+2m-5=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x_1^2-2mx_1+2m-1+2x_1-4=0\\x_2^2-2mx_2+2m-1+2x_2-4=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x_1^2-2mx_1+2m-1=-2x_1+4\\x_2^2-2mx_2+2m-1=-2x_2+4\end{matrix}\right.\)

\(\left(x_1^2-2mx_1+2m-1\right)\left(x_2^2-2mx_2+2m-1\right)< 0\)

=>\(\left(-2x_1+4\right)\left(-2x_2+4\right)< 0\)

=>\(\left(x_1-2\right)\left(x_2-2\right)< 0\)

=>\(x_1x_2-2\left(x_1+x_2\right)+4< 0\)

=>\(2m-5-2\left(2m-2\right)+4< 0\)

=>2m-1-4m+4<0

=>-2m+3<0

=>-2m<-3

=>\(m>\dfrac{3}{2}\)

29 tháng 5 2023

Ptr có nghiệm `<=>\Delta' > 0`

   `<=>(-m)^2-2m+1 > 0`

  `<=>(m-1)^2 > 0<=>m-1 ne 0<=>m ne 1`

`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m),(x_1.x_2=c/a=2m-1):}`

Ta có: `(x_1 ^2-2mx_1 +3)(x_2 ^2-2mx_2 -2)=50`

`<=>[x_1 ^2-(x_1+x_2)x_1+3][x_2 ^2-(x_1+x_2)x_2 -2]=50`

`<=>(-x_1.x_2+3)(-x_1.x_2-2)=50`

`<=>(1-2m+3)(1-2m-2)=50`

`<=>(4-2m)(-1-2m)=50`

`<=>-4-8m+2m+4m^2=50`

`<=>4m^2-6m-54=0`

`<=>4m^2+12m-18m-54=0`

`<=>(m+3)(4m-18)=0<=>[(m=-3),(m=9/2):}`  (t/m)

a) Ta có: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(2m-5\right)\)

\(=\left(2m-2\right)^2-4\left(2m-5\right)\)

\(=4m^2-8m+4-8m+20\)

\(=4m^2-16m+24\)

\(=4m^2-2\cdot2m\cdot4+16+8\)

\(=\left(2m-4\right)^2+8>0\forall m\)

Vậy: Phương trình (1) luôn có hai nghiệm phân biệt \(x_1;x_2\)

Δ=(-2)^2-4(-2m+1)

=4+8m-4=8m

Để phương trình có nghiệm thì 8m>=0

=>m>=0

\(x_2^2\left(x_1^2-1\right)+x_1^2\left(x_2^2-1\right)=8\)

=>\(2\cdot\left(x_1\cdot x_2\right)^2-x_2^2-x_1^2=8\)

=>\(2\cdot\left(-2m+1\right)^2-\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=8\)

=>\(2\left(2m-1\right)^2-\left[2^2-2\left(-2m+1\right)\right]=8\)

=>\(8m^2-8m+2-4+2\left(-2m+1\right)=8\)

=>\(8m^2-8m-2-4m+2-8=0\)

=>8m^2-12m-8=0

=>m=2 hoặc m=-1/2(loại)

6 tháng 3 2023

học tốt nhé !

6 tháng 3 2023

2 nghiệp pt phải:

 (2m - 1)2-4(m2 - 1)≥0

Vì x1 là nghiệm nên

x21−(2m−1)x1+m2−1=0

<=> x12−(2m−1)x1+m2−1=0

<=>x12−2mx1+m2=x1+1

<=> 9m2=0 <=>m=0

#YQ

6 tháng 3 2023

9m2=0 là sao ạ

NV
2 tháng 7 2021

Giả sử pt có 2 nghiệm, theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-n\\x_1x_2=2m+3n-1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x_1+x_2=-1\\x_1^2+x_2^2=13\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-1\\\left(x_1+x_2\right)^2-2x_1x_2=13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-1\\x_1x_2=-6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m-n=-1\\2m+3n-1=-6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}n=-1\\m=-1\end{matrix}\right.\)