Tính: 1/15 + 1/35 +1/63 +1/99 + 1/143
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi dãy là A ta có :
A = 1/3.5 + 1/5.7 + 1/7.9 + 1/9.11 + 1/11.13
A = 1/2 . ( 2/3.5 + 2/5.7 + 2/7.9 + 2/9.11 + 2/11.13 )
A = 1/2 . ( 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11 + 1/11 - 1/13 )
A = 1/2 . ( 1/3 - 1/13 )
A = 1/2 . 10/39
A = 5/39
\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\)
=\(\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
=\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
=\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{13}\right)\)
=\(\frac{1}{2}.\frac{10}{39}\)
=\(\frac{5}{39}\)
1/15+1/35+1/63+1/99+1/143
=1/3.5+1/5.7+1/7.9+1/9.11+1/11.13
=1/2.(2/3.5+2/5.7+2/7.9+2/9.11+2/11.13
=1/2.(1/3-1/5+1/5-1/7+1/6-1/9+1/9-1/11+1/11-1/13=1/2.(1/3-1/13)=1/2.10/39=5/39
1/15 + 1/35 + 1/63 + 1/99 + 1/143
đặt A = 1/15 + 1/35 + 1/63 + 1/99 + 1/143
A = 1/3X5 + 1/5X7 + 1/7X9 + 1/9X11 + 1/11X13
A x 2 = 2 x ( 1/3x5 + 1/5x7 + 1/7x9 + 1/9x11 + 1/11x13 )
A x 2 = 2/3x5 + 2/5x7 + 2/7x9 + 2/9x11 + 2/11x13
A x 2 = 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11 + 1/11 - 1/13
A x 2 = 1/3 - 1/13
A x 2 = 13/39 - 3/39
A x 2 = 10/39
A =10/39 : 2
A = 5/39
\(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{25}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}+\dfrac{1}{143}\)
\(=\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}+\dfrac{2}{11\cdot13}\right)\cdot\dfrac{1}{2}+\dfrac{1}{25}\)
\(=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-...+\dfrac{1}{11}-\dfrac{1}{13}\right)\cdot\dfrac{1}{2}+\dfrac{1}{25}\)
\(=\left(1-\dfrac{1}{3}\right)\cdot\dfrac{1}{2}+\dfrac{1}{25}\)
\(=\dfrac{2}{3}\cdot\dfrac{1}{2}+\dfrac{1}{25}\)
\(=\dfrac{1}{3}+\dfrac{1}{25}\)
\(=\dfrac{28}{75}\)
Đặt phép tính cần tìm là A
\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+\dfrac{1}{11.13}\)
\(2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}\)
\(2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\)
\(2A=1-\dfrac{1}{13}\)
\(2A=\dfrac{12}{13}\)
\(A=\dfrac{6}{13}\)
\(A=\dfrac{1}{3}+\dfrac{1}{15}+...+\dfrac{1}{143}\\ =\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+...+\dfrac{1}{11\times13}\\ =\dfrac{1}{2}\times\left(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+...+\dfrac{1}{11\times13}\right)\\ =\dfrac{1}{2}\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{11}-\dfrac{1}{13}\right)\\ =\dfrac{1}{2}\times\dfrac{12}{13}\\ =\dfrac{6}{13}\)
Ta có:\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\)
\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{13}\right)\)
\(=\frac{1}{2}.\frac{10}{39}\)
\(=\frac{5}{39}\)
B = 1/3*5 + 1/5*7 + 1/7*9 + 1/9*11 + 1/11*13
= 1/2 * ( 2/3*5 + 2/5*7 + 2/7*9 + 2/9*11 + 2/11*13)
= 1/2 * ( 1/3 - 1/5 + 1/5 -1/7 + ...+ 1/11 - 1/13)
= 1/2 * ( 1/3 - 1/11)
= 1/2 * 8/33
= 4/33
\(B=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\)
\(B=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}\)
\(B=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)\)
\(B=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{13}\right)\)
\(B=\frac{1}{2}.\frac{12}{39}\)
\(B=\frac{2}{13}\)
A=1/1.3 + 1/3.5 + 1/5.7 + 1/7.9 + 1/9.11 + 1/11.13 + 1/13.15
A=1/1 - 1/3 +1/3 - 1/5 +1/5 -1/7+......+1/13 - 1/15
A=1 - 1/15
A=1/14
Hỏi đi hỏi lại vậy.
1/15+1/35+1/63+1/99+1/143
=1/2x(1/15+1/35+1/63+1/99+1/143)
=1/2x(2/3x5+2/5x7+2/7x9+2/9x11+2/11x13)
=1/2x(1/3-1/5+1/7-1/9+1/9-1/11+1/11-1/13)
=1/2x(1/3-1/13)
=1/2x10/39
=5/39