K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2021

\(x^2-2\sqrt{2}+4=3x+\sqrt{2}\)

\(< =>x^2-3x+4-\sqrt{2}=0\)

Ta có : \(\Delta=\left(-3\right)^2-4.\left(4-\sqrt{2}\right)\)

\(=9-8+4\sqrt{2}=1+4\sqrt{2}\)

\(=>\orbr{\begin{cases}x=\frac{3-\sqrt{1+4\sqrt{2}}}{2}\\x=\frac{3+\sqrt{1+4\sqrt{2}}}{3}\end{cases}}\)

3 tháng 2 2017

có thể bằng 0 vì nếu x=0

 thì S=0

3 tháng 2 2017

nếu vậy giải ra cho tôi đi

14 tháng 4 2022

â) thay m = 6 và phương trình ta đc

\(x^2-5x+6=0\)

\(\Leftrightarrow\left(x-2\right).\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

NV
14 tháng 4 2022

b.

Phương trình có 2 nghiệm khi: \(\Delta=25-4m\ge0\Rightarrow m\le\dfrac{25}{4}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m\end{matrix}\right.\)

Pt có 2 nghiệm dương khi \(m>0\)

\(x_1\sqrt{x_2}+x_2\sqrt{x_1}=6\)

\(\Leftrightarrow x_1^2x_2+x_2^2x_1+2x_1x_2\sqrt{x_1x_2}=36\)

\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)+2x_1x_2\sqrt{x_1x_2}=36\)

\(\Leftrightarrow5m+2m\sqrt{m}=36\)

Đặt \(\sqrt{m}=t>0\Rightarrow2t^3+5t^2-36=0\)

\(\Leftrightarrow\left(t-2\right)\left(2t^2+9t+18\right)=0\)

\(\Leftrightarrow t=2\Rightarrow\sqrt{m}=2\)

\(\Rightarrow m=4\)

a: \(\left\{{}\begin{matrix}x_1+x_2=8\\x_1x_2=6\end{matrix}\right.\)

\(D=x_1^4-x_2^4=\left(x_1+x_2\right)\left(x_1-x_2\right)\left(x_1^2+x_2^2\right)\)

\(=8\cdot\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\cdot\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=8\cdot\left[8^2-2\cdot6\right]\cdot\sqrt{8^2-4\cdot6}\)

\(=8\cdot52\cdot2\sqrt{10}=832\sqrt{10}\)

b: \(E=\left(x_1^2+x_2^2\right)^2-2x_1^2\cdot x_2^2\)

\(=52^2-2\cdot\left(x_1\cdot x_2\right)^2=52^2-2\cdot6^2=2632\)

c: \(F=\dfrac{3x_2^2+3x_1^2}{\left(x_1\cdot x_2\right)^2}=\dfrac{3\cdot52}{6^2}=\dfrac{13}{3}\)

22 tháng 5 2021

`x^2-2x-sqrt3+1=0`
Vì `Delta=1+sqrt3-1>0`
`=>` pt có 2 nghiệm pb
ÁP dụng vi-ét:
`x_1+x_2=2,x_1.x_2=1-sqrt3`
`M=x_1^2x_2^2-2x_1.x_2-x_1-x_2`
`=(x_1.x_2)^2-2(x_1.x_2)-(x_1+x_2)`
`=(sqrt3-1)^2-2(1-sqrt3)-2`
`=4-2sqrt3-2+2sqrt3-2`
`=0`

14 tháng 11 2018

Ta có \(x1-\frac{1}{9}=x2-\frac{2}{8}=...=x9-\frac{9}{1}\)

\(=\frac{x1-1}{9}=\frac{x2-2}{8}=\frac{x3-3}{7}=...=\frac{x9-9}{1}\)

\(\frac{x1-1+x2-2+x3-3+...+x9-9}{9+8+7+...+1}\)

\(=\frac{\left(x1+x2+x3+...+x9\right)-\left(1+2+3+...+9\right)}{9+8+7+....+1}\)

=\(\frac{90-45}{45}=\frac{45}{45}=1\)

=> \(\hept{\begin{cases}\begin{cases}x1=10\\x2=10\end{cases}\\.....\\x9=10\end{cases}}\)