K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác EAOD có \(\widehat{EAO}+\widehat{EDO}=90^0+90^0=180^0\)

nên EAOD là tứ giác nội tiếp

b: Xét (O) có

EA,ED là các tiếp tuyến

Do đó: EA=ED

=>E nằm trên đường trung trực của AD(1)

ta có: OA=OD

=>O nằm trên đường trung trực của AD(2)

Từ (1),(2) suy ra OE là đường trung trực của AD

=>OE\(\perp\)AD tại H

Xét (O) có

ΔAKB nội tiếp

AB là đường kính

Do đó: ΔAKB vuông tại K

Xét ΔEAB vuông tại A có AK là đường cao

nên \(EK\cdot EB=EA^2\left(3\right)\)

Xét ΔEAO vuông tại A có AH là đường cao

nên \(EH\cdot EO=EA^2\left(4\right)\)

Từ (3),(4) suy ra \(EK\cdot EB=EH\cdot EO\)

1: góc EAO+góc EDO=180 độ

=>EAOD nội tiếp

2: Xét (O) có

EA,ED là tiếp tuyến

=>EA=ED

mà OA=OD

nên OE là trung trực của AD

=>OE vuông góc AD tại H

góc AKB=1/2*sđ cug AB=90 độ

=>AK vuông góc EB

ΔEAB vuông tại E có AK vuông góc EB

nên EK*EB=EA^2=EH*EO

=>EK/EO=EH/EB

=>ΔEKH đồng dạng với ΔEOB

=>góc EHK=góc EBO=góc KBA

1: Xét ΔBDA có

O là trung điẻm của AB

OI//BD

=>I là trung điểm của AD

ΔOAD cân tại O

mà OI là trung tuyến

nên OI vuông góc AD và OI là phân giác của góc AOD

2: Xét ΔOAC và ΔODC có

OA=OD

góc AOC=góc DOC
OC chung

Do đó: ΔOAC=ΔODC

=>góc ODC=90 độ

=>CD là tiếp tuyến của (O)

25 tháng 3 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Xét tam giác COD cân tại O có OH là đường cao

⇒ OH cũng là tia phân giác ⇒ ∠(COM) = ∠(MOD)

Xét ΔMCO và ΔMOD có:

CO = OD

∠(COM) = ∠(MOD)

MO là cạnh chung

⇒ ΔMCO = ΔMOD (c.g.c)

⇒ ∠(MCO) = ∠(MDO)

∠(MCO) =  90 0 nên ∠(MDO) = 90 0

⇒ MD là tiếp tuyến của (O)