K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 5

Lời giải:

$x^2+2xy+3y^2=6$

$\Leftrightarrow (x^2+2xy+y^2)+2y^2=6$

$\Leftrightarrow (x+y)^2+2y^2=6$
Áp dụng BĐT Bunhiacopxky:

$M^2=(x+2y)^2=[(x+y)+y]^2\leq [(x+y)^2+2y^2](1+\frac{1}{2})=6.\frac{3}{2}=9$

$\Rightarrow -3\leq M\leq 3$
Vậy $M_{\min}=-3; M_{\max}=3$.

1 tháng 9 2019

\(x^2+2y^2+2xy+3x+3y-4=0\)

<=> \(x^2+2xy+y^2+3\left(x+y\right)+y^2-4=0\)

<=> \(\left(x+y\right)^2+3\left(x+y\right)-4+y^2=0\)

<=>\(A^2+3A-4+y^2=0\)

<=> (A-1)(A+4)=-y2\(\le0\)

do A-1 <A+4

=> \(\left\{{}\begin{matrix}A-1\le0\\A+4\ge4\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}A\le1\\A\ge-4\end{matrix}\right.\)

<=> \(-4\le A\le1\)

minA xảy ra <=> \(\left\{{}\begin{matrix}y=0\\x+y=-4\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}y=0\\x=-4\end{matrix}\right.\)(t/m)

maxA xảy ra <=> \(\left\{{}\begin{matrix}y=0\\x+y=1\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}y=0\\x=1\end{matrix}\right.\)(t/m)

Vũ Minh TuấnTrần Thanh PhươngLê Thị Thục HiềnBăng Băng 2k6 giúp vs

16 tháng 9 2019

\(x^2-3x-3y+2xy+2y^2-4=0\)

\(\Leftrightarrow\left(x+y+3\right)^2-9\left(x+y+3\right)+y^2+14=0\)

\(\Leftrightarrow P^2-9P+y^2+14=0\)

Ta có: \(0=P^2-9P+y^2+14\ge P^2-9P+14=\left(P-7\right)\left(P-2\right)\)

\(\Leftrightarrow2\le P\le7\)

Vậy...

P/s: Về cơ bản hướng làm là thế, nhưng khi tính toán + biến đổi có thể sai, bạn tự check lại.

16 tháng 9 2019

Dòng kế cuối là:\(\Rightarrow2\le P\le7\) nha!

13 tháng 11 2016

\(M=x^2+2y^2+2xy-2x-3y+1\)

=> \(M=x^2+2x\left(y-1\right)+\left(y-1\right)^2-\left(y-1\right)^2+2y^2-3y+1\)

=> \(M=\left(x+y-1\right)^2-y^2+2y-1+2y^2-3y+1\)

=> \(M=\left(x+y-1\right)^2+y^2-y\)

=> \(M=\left(x+y-1\right)^2+y^2-2y\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\)

=> \(M=\left(x+y-1\right)^2+\left(y-\frac{1}{2}\right)^2-\frac{1}{4}\)

Có \(\left(x+y-1\right)^2\ge0\)với mọi x, y

\(\left(y-\frac{1}{2}\right)^2\ge0\)với mọi y

=> \(M=\left(x+y-1\right)^2+\left(y-\frac{1}{2}\right)^2-\frac{1}{4}\ge\frac{-1}{4}\)với mọi x, y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\y-\frac{1}{2}=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\end{cases}}\)

KL: Mmin = \(\frac{-1}{4}\)<=> \(x=y=\frac{1}{2}\)

13 tháng 11 2016

cảm ơn Giang

12 tháng 7 2016

nhanh lên các bạn nhé mai mình đi học rồi

7 tháng 12 2021

Giups mk vs ạ ai nhanh mk tick nha

AH
Akai Haruma
Giáo viên
8 tháng 12 2021

Lời giải:
\(x^2+3y^2+10x-14y-2xy=11\)

$\Leftrightarrow (x^2-2xy+y^2)+2y^2+10x-14y=11$

$\Leftrightarrow (x-y)^2+10(x-y)+25+(2y^2-4y+2)=38$

$\Leftrightarrow (x-y+5)^2+2(y-1)^2=38$

$\Rightarrow (x-y+5)^2=38-2(y-1)^2\leq 38$

$\Rightarrow -\sqrt{38}\leq x-y+5\leq \sqrt{38}$

$\Leftrightarrow -\sqrt{38}-5\leq x-y\leq \sqrt{38}-5$
Vậy $A_{\min}=-\sqrt{38}-5$ và $A_{\max}=\sqrt{38}-5$

 

27 tháng 10 2022

I:
a: \(=x^2-2x+1+x^2-4x+4\)

\(=2x^2-6x+5\)

\(=2\left(x^2-3x+\dfrac{5}{2}\right)\)

\(=2\left(x^2-3x+\dfrac{9}{4}+\dfrac{1}{4}\right)\)

\(=2\left(x-\dfrac{3}{2}\right)^2+\dfrac{1}{2}>=\dfrac{1}{2}\)

Dấu = xảy ra khi x=3/2

b: \(=-4\left(x^2-2x+\dfrac{3}{4}\right)\)

\(=-4\left(x^2-2x+1-\dfrac{1}{4}\right)=-4\left(x-1\right)^2+1< =1\)

Dấu = xảy ra khi x=1