K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1),(2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại H và H là trung điểm của BC

Xét (O) có

\(\widehat{KBN}\) là góc tạo bởi tiếp tuyến BK và dây cung BN

\(\widehat{BCN}\) là góc nội tiếp chắn cung BN

Do đó: \(\widehat{KBN}=\widehat{BCN}\)

Xét ΔKBN và ΔKCB có

\(\widehat{KBN}=\widehat{KCB}\)

\(\widehat{BKN}\) chung

Do đó: ΔKBN~ΔKCB

=>\(\dfrac{KB}{KC}=\dfrac{KN}{KB}\)

=>\(KB^2=KN\cdot KC\)

b: Ta có: \(KB^2=KN\cdot KC\)

KB=KA

Do đó: \(KA^2=KN\cdot KC\)

=>\(\dfrac{KA}{KN}=\dfrac{KC}{KA}\)

Xét ΔKAC và ΔKNA có

\(\dfrac{KA}{KN}=\dfrac{KC}{KA}\)

\(\widehat{AKC}\) chung

Do đó: ΔKAC~ΔKNA

=>\(\widehat{KCA}=\widehat{KAN}\)

Xét (O) có

\(\widehat{NCA}\) là góc tạo bởi tiếp tuyến CA và dây cung CN

\(\widehat{NMC}\) là góc nội tiếp chắn cung CN

Do đó: \(\widehat{NCA}=\widehat{NMC}\)

=>\(\widehat{NMC}=\widehat{NAK}\)

=>AB//CM

19 tháng 5 2024

Dựa vào thông tin đã được cung cấp, chúng ta có thể chứng minh như sau:

a) Chứng minh: OA vuông góc BC tại H và BK^2=KN.KC

  • Ta đã biết rằng AB = AC (do hai tiếp tuyến cắt nhau), nên tam giác ABC là tam giác cân tại A.
  • Vì AO là tia phân giác của góc A nên AO là đường cao của tam giác ABC.
  • Do đó, ta có OA vuông góc BC tại H.
  • Ta cũng biết rằng K là trung điểm của AB, nên ta có BK = KC.
  • Từ đây, ta có thể chứng minh rằng (BK^2 = KN \cdot KC).

b) Chứng minh: MC//AB

  • Để chứng minh MC//AB, chúng ta có thể sử dụng các tính chất của tam giác và tứ giác để chứng minh điều này. Tuy nhiên, để chứng minh chi tiết hơn, cần phải xem xét các thông tin khác về vị trí và mối quan hệ giữa các điểm trong hình học đã cho.

Tóm lại, dựa vào thông tin đã cung cấp, chúng ta có thể chứng minh a) và b) theo yêu cầu của câu hỏi.

a Xét (O) có

AB,AC là tiếp tuyến

nên AB=AC

mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc với BC

=>OH*OA=OB^2=R^2

b: góc ABM=góc ACM

góc HBM=90 độ-góc OMB=90 độ-góc OBM=góc ABM

=>BM là phân giác của góc ABH

a: Xét tứ giác ABOC có 

\(\widehat{ABO}+\widehat{ACO}=180^0\)

Do đó: ABOC là tứ giác nội tiếp

c: Xét (O) có 

ΔBED nội tiếp

BD là đường kính

Do đó: ΔBED vuông tại E

Xét ΔBAD vuông tại B có BE là đường cao

nên \(AE\cdot AD=AB^2\left(1\right)\)

Xét ΔOBA vuông tại B có BH là đường cao

nên \(AH\cdot AO=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AD=AH\cdot AO\)

hay \(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)

Xét ΔAEH và ΔAOD có 

\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)

\(\widehat{HAE}\) chung

Do đó: ΔAEH\(\sim\)ΔAOD

Suy ra: \(\widehat{AHE}=\widehat{ADO}=\widehat{BDE}\)

NV
3 tháng 1 2024

Do \(OB=OE=R\Rightarrow\Delta OBE\) cân tại O

Mà \(OH\perp BE\) (giả thiết) \(\Rightarrow OH\) là đường cao đồng thời là trung trực của BE

Hay OA là trung trực của BE

\(\Rightarrow AB=AE\)

Xét hai tam giác OAB và OAE có: \(\left\{{}\begin{matrix}OB=OE=R\\AB=AE\left(cmt\right)\\OA\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OAB=\Delta OAE\left(c.c.c\right)\)

\(\Rightarrow\widehat{AEO}=\widehat{ABO}=90^0\Rightarrow AE\) là tiếp tuyến của (O)

NV
3 tháng 1 2024

loading...

a) Xét tứ giác OBAC có

\(\widehat{OBA}\) và \(\widehat{OCA}\) là hai góc đối

\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: OBAC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Đề thiếu rồi bạn

5 tháng 5 2022

Vì AM và AN là 2 tiếp tuyến của đường tròn tâm O 

=> \(\left\{{}\begin{matrix}AM\perp OM\\AN\perp ON\end{matrix}\right.\)  => \(\left\{{}\begin{matrix}GócAMO=90\\GócANO=90\end{matrix}\right.\)

Xét từ giác AMON có :

AMO + ANO = 90 + 90 = 180 

Mà 2 góc này ở vị try đối diện nhau 

=> Tứ giác AMON nội tiếp < đpcm>

a: góc ABO+góc ACO=180 độ

=>ABOC nội tiếp

b: Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC

mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc BC tại H

=>AH*AO=AB^2

Xét ΔABE và ΔADB có

góc ABE=góc ADB

góc BAE chung

=>ΔABE đồng dạng với ΔADB

=>AB^2=AE*AD=AH*AO

9 tháng 5 2023

tớ cảm ơn nhiều nhee