K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tứ giác OBAC có

\(\widehat{OBA}\) và \(\widehat{OCA}\) là hai góc đối

\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: OBAC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Cho đường tròn (O) bán kính R = 2 cm. Điểm A nằm ngoài đường tròn. Từ A vẽ các tiếp tuyến AB,AC với đường tròn (B,C là các tiếp điểm). AO cắt BC tại D.  ( VẼ HÌNH HỘ MÌNH )                                                                                               a) Cmr 4 điểm A,B,O,C cùng thuộc 1 đường tròn và OA là trung trực của BC (Ý 1 CM THEO 2 TAM GIÁC NỘI TIẾP, KHI CM NÊU RÕ NHỮNG DỮ KIỆN ĐỀ BÀI CHO)                   ...
Đọc tiếp

Cho đường tròn (O) bán kính R = 2 cm. Điểm A nằm ngoài đường tròn. Từ A vẽ các tiếp tuyến AB,AC với đường tròn (B,C là các tiếp điểm). AO cắt BC tại D.  ( VẼ HÌNH HỘ MÌNH )                                                                                               a) Cmr 4 điểm A,B,O,C cùng thuộc 1 đường tròn và OA là trung trực của BC (Ý 1 CM THEO 2 TAM GIÁC NỘI TIẾP, KHI CM NÊU RÕ NHỮNG DỮ KIỆN ĐỀ BÀI CHO)                                                                                              b) Vẽ đk BE của đường tròn (O), AE cắt đt (O) tại điểm thứ hai F. Gọi G là trung điểm của EF. Đt OG cắt đt BC tại H. Tính tích OA.OD và cm OA.OD=OG.OH                                                                                                     c) CM EH là tiếp tuyến của đt (O)

1
31 tháng 12 2023

Bổ sung đề; OA cắt BC tại D

a: Ta có: ΔOBA vuông tại B

=>B nằm trên đường tròn đường kính OA(1)

Ta có: ΔOCA vuông tại C

=>C nằm trên đường tròn đường kính OA(2)

Từ (1) và (2) suy ra B,C,O,A cùng thuộc đường tròn đường kính OA

Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(3)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(4)

Từ (3) và (4) suy ra OA là đường trung trực của BC

b: OA là đường trung trực của BC

Do đó: OA\(\perp\)BC tại D và D là trung điểm của BC

Xét ΔOBA vuông tại B có BD là đường cao

nên \(OD\cdot OA=OB^2=R^2\)

Ta có: ΔOEF cân tại O

mà OG là đường trung tuyến

nên OG\(\perp\)EF tại G

Xét ΔOGA vuông tại G và ΔODH vuông tại D có

góc GOA chung

Do đó: ΔOGA đồng dạng với ΔODH

=>\(\dfrac{OG}{OD}=\dfrac{OA}{OH}\)

=>\(OG\cdot OH=OA\cdot OD\)

c: Ta có: \(OG\cdot OH=OA\cdot OD\)

\(OA\cdot OD=R^2\)

Do đó: \(OG\cdot OH=R^2=OE^2\)

=>\(\dfrac{OG}{OE}=\dfrac{OE}{OH}\)

Xét ΔOGE và ΔOEH có

\(\dfrac{OG}{OE}=\dfrac{OE}{OH}\)

\(\widehat{GOE}\) chung

Do đó: ΔOGE đồng dạng với ΔOEH

=>\(\widehat{OGE}=\widehat{OEH}\)

=>\(\widehat{OEH}=90^0\)

=>HE là tiếp tuyến của (O)

31 tháng 12 2023

đợi mãi mới thấy bạn trả lời

 

Cho đường tròn (O) bán kính R = 2 cm. Điểm A nằm ngoài đường tròn. Từ A vẽ các tiếp tuyến AB,AC với đường tròn (B,C là các tiếp điểm). AO cắt BC tại D.  ( VẼ HÌNH HỘ MÌNH )                                                                                               a) Cmr 4 điểm A,B,O,C cùng thuộc 1 đường tròn và OA là trung trực của BC (Ý 1 CM THEO 2 TAM GIÁC NỘI TIẾP, KHI CM NÊU RÕ NHỮNG DỮ KIỆN ĐỀ BÀI CHO)                   ...
Đọc tiếp

Cho đường tròn (O) bán kính R = 2 cm. Điểm A nằm ngoài đường tròn. Từ A vẽ các tiếp tuyến AB,AC với đường tròn (B,C là các tiếp điểm). AO cắt BC tại D.  ( VẼ HÌNH HỘ MÌNH )                                                                                               a) Cmr 4 điểm A,B,O,C cùng thuộc 1 đường tròn và OA là trung trực của BC (Ý 1 CM THEO 2 TAM GIÁC NỘI TIẾP, KHI CM NÊU RÕ NHỮNG DỮ KIỆN ĐỀ BÀI CHO)                                                                                              b) Vẽ đk BE của đường tròn (O), AE cắt đt (O) tại điểm thứ hai F. Gọi G là trung điểm của EF. Đt OG cắt đt BC tại H. Tính tích OA.OD và cm OA.OD=OG.OH                                                                                                     c) CM EH là tiếp tuyến của đt (O)

1
21 tháng 12 2021

a: Xét ΔOBA và ΔOCA có

OB=OC

\(\widehat{BOA}=\widehat{COA}\)

OA chung

Do đó: ΔOBA=ΔOCA

=>AC là tiếp tuyến của (O)

1: Xét ΔOBC có 

OH là đường cao

OH là đường trung tuyến

Do đó: ΔOCB cân tại O

hay C thuộc đường tròn(O)

Xét ΔOBA và ΔOCA có 

OB=OC

AB=AC

OA chung

Do đó: ΔOBA=ΔOCA

Suy ra: \(\widehat{OBA}=\widehat{OCA}=90^0\)

hay AC là tiếp tuyến của (O)

2: Xét ΔABM và ΔANB có 

\(\widehat{ABM}=\widehat{ANB}\)

\(\widehat{BAM}\) chung

Do đó: ΔABM\(\sim\)ΔANB

Suy ra: AB/AN=AM/AB

hay \(AB^2=AM\cdot AN\left(1\right)\)

Xét ΔOBA vuông tại B có BH là đường cao

nên \(AH\cdot AO=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AN=AH\cdot AO\)

a: góc KOA+góc BOA=90 độ

góc KAO+góc COA=90 độ

mà góc BOA=góc COA

nên góc KOA=góc KAO

=>ΔKAO cân tại K

b: Xét ΔOBA vuông tại B có sin BAO=OB/OA=1/2

nên góc BAO=30 độ

=>góc BOA=60 độ

Xét ΔOBI có OB=OI và góc BOI=60 độ

nên ΔOBI đều

=>OI=OB=1/2OA=R

=>I là trung điểm của OA

ΔKAO cân tại K

mà KI là trung tuyến

nên KI vuông góc với OI

=>KI là tiếp tuyến của (O)