K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2021

toán lớp 6 mà bạ :))

28 tháng 11 2021

thì sao

6 tháng 1 2017

mày lấn trước đặt là uxumaki naruto

đúng chưa

100%

28 tháng 9 2018

ta có 92n=34n=81n

ta có: ax-bx\(⋮\)a-b

+) 92n-1=34n-14n\(⋮\)3-1=2

+) 92n-1=81n-1n\(⋮\)81-1=80

mà 80\(⋮\)5

=>92n-1\(⋮\)5

=> đpcm

\(⋮\)

2 tháng 11 2015

a) 10^n-1=100...0(n chữ số 0)-1=999...9(n chữ số 9) chia hết cho 9

b)10^n+8=100...0(n chữ số 0)+8=100....08(n-1 chữ số 0) chia hết cho 9

17 tháng 12 2014

a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)

   60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)

b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.

Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.

c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)

   2100 chia hết cho 15 => 2100b chia hết cho 15 (2)

Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)

d,Ta có : n^2+n+1=nx(n+1)+1

nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.

nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.

10 tháng 6 2015

Mình xin trả lời ngắn gọn hơn!                                                                      a)60 chia hết cho 15=> 60n chia hết cho 15                                                   15 chia hết cho 15                                                                                       =>60n+15 chia hết cho 15.                                                                             60 chia hết cho 30=>60n chia hết cho 30                                                      15 không chia hết cho 30                                                                       =>60n+15 không chia hết cho 30                                             b)Gọi số tự nhiên đó là A                                                                           Giả sử A thỏa mãn cả hai điều kiện                                                           => A= 15.x+6 & = 9.y+1                                                                         Nếu A = 15x +6 => A chia hết cho 3                                                          Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=>                                    c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15.             => 1500a+2100b chia hết cho 15.                                                          d) A chia hết cho 2;5 => A chia hết cho 10.                                                 => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.)                    Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ)                           Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ)                                       => A không chia hết cho 2;5

 

 

AH
Akai Haruma
Giáo viên
19 tháng 8 2023

Bài 2:

Với $n$ chẵn thì $n+4$ chẵn

$\Rightarrow (n+4)(n+7)$ là số chẵn

Với $n$ lẻ thì $n+7$ chẵn

$\Rightarrow (n+4)(n+7)$ là số chẵn

Vậy $(n+4)(n+7)$ chẵn với mọi số tự nhiên $n$ (đpcm)

AH
Akai Haruma
Giáo viên
19 tháng 8 2023

Bài 3:

a. 

$101\vdots x-1$

$\Rightarrow x-1\in\left\{\pm 1; \pm 101\right\}$

$\Rightarrow x\in\left\{0; 2; 102; -100\right\}$

Vì $x\in\mathbb{N}$ nên $x=0, x=2$ hoặc $x=102$

b.

$a+3\vdots a+1$

$\Rightarrow (a+1)+2\vdots a+1$
$\Rightarrow 2\vdots a+1$

$\Rightarrow a+1\in\left\{\pm 1; \pm 2\right\}$

$\Rightarrow a\in\left\{0; -2; 1; -3\right\}$
 

8 tháng 12 2020

Bài 1:

a,\(A=3+3^2+3^3+...+3^{2010}\)

\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)

\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)

\(=3.40+...+3^{2007}.40\)

\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)

Vì A chia hết cho 40 nên chữ số tận cùng của A là 0

b,\(A=3+3^2+3^3+...+3^{2010}\)

\(3A=3^2+3^3+...+3^{2011}\)

\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)

\(2A=3^{2011}-3\)

\(2A+3=3^{2011}\)

Vậy 2A+3 là 1 lũy thừa của 3