cho điểm M thuộc đoạn thẳng AB(MA>MB) trên cùng 1 nửa mặt phẳng bờ AB vẽ các tam giác đều AMC, BMD. Gọi E,F lần lượt là trung điểm của AD, BC. Gọi K là giao điểm của AD và BC. CMR:
a) AD=bc
b) tam giác AEM= tam giác CFM ; từ đó suỷa ;à tam giác MEF đều
c) (AK + BK - CK - DK)/KM = 2
a/
Xét \(\Delta AMD\) và \(\Delta BMC\) có
MD = MB (cạnh tg đều BMD) (1)
MA = MC (cạnh tg đều AMC) (2)
\(\widehat{AMD}=\widehat{AMB}-\widehat{BMD}=180^o-60^o=120^o\)
\(\widehat{BMC}=\widehat{AMB}-\widehat{AMC}=180^o-60^o=120^o\)
\(\Rightarrow\widehat{AMD}=\widehat{BMC}=120^o\) (3)
Từ (1) (2) (3) => \(\Delta AMD=\Delta BMC\left(c.g.c\right)\Rightarrow AD=BC\)
b/
Xét \(\Delta AEM\) và \(\Delta CFM\) có
MA = MC (cạnh tg đều AMC) (4)
\(AD=BC\left(cmt\right);AE=\dfrac{AD}{2};CF=\dfrac{BC}{2}\Rightarrow AE=CF\) (5)
\(\Delta AMD=\Delta BMC\left(cmt\right)\Rightarrow\widehat{MAD}=\widehat{MCB}\) (6)
Từ (4) (5) (6) \(\Rightarrow\Delta AEM=\Delta CFM\left(c.g.c\right)\)
\(\Rightarrow ME=MF\) và \(\widehat{AME}=\widehat{CMF}\)
Ta có
\(\widehat{AME}+\widehat{EMC}=\widehat{AMC}=60^o\)
\(\Rightarrow\widehat{CMF}+\widehat{EMC}=\widehat{EMF}=60^o\)
=> \(\Delta MEF\) là tg đều