K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔEDA vuông tại D và ΔEHA vuông tại H có

EA chung

\(\widehat{DEA}=\widehat{HEA}\)

Do đó: ΔEDA=ΔEHA

=>AD=AH

b: Xét ΔDEF có DE<DF<EF

mà \(\widehat{DFE};\widehat{DEF};\widehat{EDF}\) lần lượt là góc đối diện của các cạnh DE,DF,EF

nên \(\widehat{DFE}< \widehat{DEF}< \widehat{EDF}\)

c: ΔEDA=ΔEHA

=>ED=EH

Xét ΔEHK vuông tại H và ΔEDF vuông tại D có

EH=ED
\(\widehat{HEK}\) chung

Do đó: ΔEHK=ΔEDF

=>EK=EF

Ta có hình vẽ sau:

E D F K A B

a) Ta có \(\Delta DEF\)vuông tại E

=> ED2+EF2=DF2 ( Theo định lý Py-ta-go)

=> 82+62=DF2

=> DF2=100

=> DF=10(cm)

Vậy DF=10cm

b) Xét \(\Delta DKE\)và \(\Delta DKA\):

DK: cạnh chung

\(\widehat{EDK}=\widehat{ADK}\left(gt\right)\)

\(\widehat{DEK}=\widehat{DAK}=90^o\)

=> \(\Delta KDE=\Delta KDA\left(ch-gn\right)\)

=> DE=DA( 2 cạnh t/ứ)

=> đpcm

c) Ta có: \(\Delta DEK=\Delta DAK\)(cm câu b)

=> EK=AK( 2 cạnh t/ứ)

Xét \(\Delta EKB\)vuông tại E có: KB>KE

=> KB> AK

d) Xét \(\Delta EKB\)và \(\Delta AKF\):

\(\widehat{BEK}=\widehat{FAK}=90^o\)

EK=AK( cm câu c)

\(\widehat{EKB}=\widehat{FKB}\left(đđ\right)\)

=> \(\Delta BEK=\Delta FAK\left(g.c.g\right)\)

=> EB=AF (2 canh t/ứ)

Lại có DE=DA(cm câu b)

=> DE+EB=DA+AF

=> DB=DF

=> \(\Delta DBF\)cân ở D

=> \(\widehat{DBF}=\frac{180^o-\widehat{BDF}}{2}\left(1\right)\)

Mà \(\Delta DEA\)cân ở D(DE=DA)

=> \(\widehat{DEA}=\frac{180^o-\widehat{EDA}}{2}\left(2\right)\)

Từ (1) và (2) => \(\widehat{DBF}=\widehat{DEA}\)

Mà 2 góc này ở vị trí đồng vị

=> EA//BF

=> đpcm

P/s: Mệt quá O.O''

3 tháng 5 2016

D E F

a/ Vì EF2=DE2+DF2 (Pytago)

=> Tam giác DEF vuông tại D

16 tháng 5 2022

câu a bị lx

16 tháng 5 2022

lên nhanh thế cj

 

15 tháng 5 2021

a) xét ΔHED và ΔDEF có 

\(\widehat{EHD}=\widehat{EDF}=\)90o

\(\widehat{E} chung\)

=> ΔHED ∼ ΔDEF (gg)

b) Xét ΔDEF có \(\widehat{D}=\)90o

=> DE2+DF2=EF2

=>62+82=EF2

=> EF=10 cm

SΔDEF=\(\dfrac{ED.DF}{2}=\dfrac{DH.EF}{2}\)=> ED.DF=DH.EF => 6.8=DH.10

=> DH =4,8 cm

c) Xét ΔDEH có \(\widehat{EHD}=90\)o

=> HD2.HE2=ED2

=>4.82+HE2=62

=> HE=3.6

ta lại có DI là phân giác 

=> \(\dfrac{EI}{IH}=\dfrac{ED}{HD}\)

=>\(\dfrac{EI}{EH-EI}=\dfrac{6}{4.8} \)=>\(\dfrac{EI}{3.6-EI}=\dfrac{6}{4.8}\)=>EI=2

=> IH=EH-EI=3.6-2=1.6

a) Xét ΔHED vuông tại H và ΔDEF vuông tại D có

\(\widehat{HED}\) chung

Do đó: ΔHED\(\sim\)ΔDEF(g-g)

21 tháng 1 2016

b. Ta co goc EMD + goc EMH =90 mà DEM = HEM nen EMD = EMH. Xet 2 tam giac DEM va HEM có EH canh chung, goc EMH =EMD, DEM=HEM

C. EF=EK suy ra tam giac EFK can tai E. EM la tia phan giác, cung là đường cao, ta lại có ED vuong góc voi EK. Suy ra M là trực tâm. Mà MH vuong goc EF. Suy ra KMH thang hang