K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

\(\widehat{HBA}\) chung

Do đó: ΔHBA~ΔABC

b: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

ΔHBA~ΔABC

=>\(\dfrac{HB}{AB}=\dfrac{BA}{BC}=\dfrac{HA}{AC}\)

=>\(\dfrac{HB}{12}=\dfrac{HA}{16}=\dfrac{12}{20}=\dfrac{3}{5}\)

=>\(HB=12\cdot\dfrac{3}{5}=7,2\left(cm\right);HA=16\cdot\dfrac{3}{5}=9,6\left(cm\right)\)

 

4 tháng 5

câu c đâu bạn 

 

16 tháng 7 2019

Hình bạn tự vẽ nhé...

a)

Xét tam giác BAH và tam giác ABC , có :

A^ = H^ = 90O

B^ : góc chung

=> tam giác HAB ~ tam giác ACB ( g.g)

c) 

 ADĐL pitago vào tam giác vuông ABC , có :

AB2 + AC2 = BC2

=> 122 + 166 = BC2

=> BC2 = 400

=> BC = 20 cm

Vì tam giác ACB ~ tam giác HAB , nên ta có :

 AH/ACAB/BC

=> AH/16=12/20

=> AH = 9,6 cm.

a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng vơi ΔABC

b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

BH=12^2/20=7,2cm

c: \(S_{ABC}=\dfrac{1}{2}\cdot12\cdot16=6\cdot16=96\left(cm^2\right)\)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)

\(BH=\sqrt{12^2-9.6^2}=7.2\left(cm\right)\)

9 tháng 4 2021

Giúp mình với mọi người 😭😭

a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có

\(\widehat{ABC}\) chung

Do đó: ΔABC∼ΔHBA(g-g)

1: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

Do đó: ΔHBA\(\sim\)ΔABC

2: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=4.8\left(cm\right)\)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABC}\) chung

DO đó:ΔABC\(\sim\)ΔHBA

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

c: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

Do đó:ADHE là hình chữ nhật

Suy ra: AH=DE

mà \(AH=\sqrt{4\cdot16}=8\left(cm\right)\)

nên DE=8cm

25 tháng 3 2022

đề có vấn đề đấy bạn, ABC cân A thì AB =AC =12 cm chứ sao AC =16cm đc nhỉ

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

góc B chung

DO đó: ΔHBA∼ΔABC

b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)

16 tháng 5 2015

Tự vẽ hình nha

a) xét tam giác HAB và tam giác ABC

góc AHB = góc ABC

góc CAB : chung

Suy ra : tam giác AHB ~ tam giác ABC ( g-g )

b) Áp dụng định lí py - ta - go vào tam giác ABC ta được :

AC2 + AB2 = BC2

162 + 122 = BC2

400          = BC2

=> BC = \(\sqrt{400}\)= 20 ( cm )

ta có tam giác HAB ~ tam giác ABC ( câu a )

=> \(\frac{AH}{AC}=\frac{AB}{BC}hay\frac{AH}{16}=\frac{12}{20}\)

=> AH = \(\frac{12.16}{20}=9,6\)( cm )

Độ dài cạnh BH là 

Áp dụng định lí py - ta - go vào tam giác HBA ta được : 

AH+ BH2 = AB2

BH2          = AB2 - AH2

BH2             = 122 - 9,62

BH2              = 51,84 

=> BH       = \(\sqrt{51,84}\) = 7,2 ( cm )

c) Vì AD là đường phân giác của tam giác ABC nên :

\(\frac{AB}{BD}=\frac{AC}{CD}\Leftrightarrow\frac{AB}{BC-CD}=\frac{AC}{CD}\)

                    <=>   \(\frac{AB.CD}{CD\left(BC-CD\right)}=\frac{AC\left(BC-CD\right)}{CD\left(BC-CD\right)}\)

                    <=>   AB.CD               =   AC(BC - CD)

                    hay   12CD                 =   16.20 - 16CD

                     <=>  12CD+ 16CD      =   320

                     <=>             28CD      =   320

                     <=>                 CD     =    \(\frac{320}{28}\approx11.43\left(cm\right)\)

Độ dài cạnh BD là :

BD = BC - CD

BD = 20 - \(\frac{320}{28}\)\(\approx\) 8,57 ( cm )

16 tháng 5 2015

Cho hỏi đồng dạng là sao bạn???Tớ mới học lớp 7 thôi,nên chưa biết ^^

22 tháng 4 2018

A B C H 12cm 16cm I D

a)Tính BC:

\(\Delta ABC\)vuông tại A nên:

BC2=AB2+AC2

BC=\(\sqrt{AB^2+AC^2}\)=\(\sqrt[]{12^2+16^2}\)=20 (cm)

b) Xét \(\Delta vuôngABC\)\(\Delta VuôngHBA\)có:

\(\widehat{B}\):chung 

Do đó \(\Delta ABC\)đồng dạng \(\Delta HBA\)(góc nhọn)

Vì \(\Delta ABC\)đồng dạng \(\Delta HBA\)

=>\(\frac{AB}{BH}=\frac{BC}{AB}\)=> AB.AB = BC.BH       =>AB = BC.BH

c) Vì \(\Delta ABC\) đồng dạng \(\Delta HBA\) nên:

\(\frac{BA}{BC}=\frac{BH}{BA}\) (1)

Mặt khác: Do BD là đường phân giác của \(\Delta ABC\)nên:

\(\frac{AD}{DC}=\frac{BA}{BC}\)( T/c đường phân giác trong tam giác)   (2)

Vì BI là đường phân giác của \(\Delta HBA\) nên:

\(\frac{IH}{AI}=\frac{BH}{BA}\)( T/c đường phân giác trong tam giác)   (3)

Từ (1), (2), (3) Suy ra \(\frac{IH}{AI}=\frac{AD}{DC}\) (T/c bắc cầu)