Tìm a để đã thức (2x^3 - 4x^2 + 3x + a - 10) chia hết cho đa thức (x -2) có lời giải chỉ tiết ạ (mình cảm ơn ạ)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để a(x) chia hết cho 2x-1 thì \(2x^3-x^2+2x^2-x-3x+\dfrac{3}{2}+m-\dfrac{3}{2}⋮2x-1\)
\(\Leftrightarrow m-\dfrac{3}{2}=0\)
hay \(m=\dfrac{3}{2}\)
Để \(2x^3-4x^2+6x+a⋮x+2\)
\(\Leftrightarrow2x^3-4x^2+6x+a=\left(x+2\right)\cdot a\left(x\right)\)
Thay \(x=-2\)
\(\Leftrightarrow2\left(-2\right)^3-4\left(-2\right)^2+6\left(-2\right)+a=0\\ \Leftrightarrow-16-16-12+a=0\\ \Leftrightarrow-44+a=0\Leftrightarrow a=44\)
a: \(M=3x^5y^3-3x^5y^3-4x^4y^3+2x^4y^3+7xy^2=-2x^4y^3+7xy^2\)
b: \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2=x^3+x^2+x+2\)
c: \(M\left(x\right)=-3x^4y^3+10+xy\)
\(a)M=3x^5y^3-4x^4y^3+2x^4y^3+7xy^2-3x^5y^3\)
\(M=\left(3x^5y^3-3x^5y^3\right)+\left(-4x^4y^3+2x^4y^3\right)+7xy^2\)
\(M=-2x^4y^3+7xy^2\)
\(\text{Bậc là:}7\)
\(b)P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)
\(P\left(x\right)=\left(2x^3-x^3\right)+\left(-2x+3x\right)+x^2+2\)
\(P\left(x\right)=x^3+x+x^2+2\)
\(P\left(x\right)=x^3+x^2+x+2\)
\(\text{Bậc là:}3\)
\(M=\left(6x^6y-6x^6y\right)+\left(x^4y^3-4x^4y^3\right)+10+xy\)
\(M=-3x^4y^3+10+xy\)
\(\text{Bậc là:}7\)
\(2x^3-4x^2+3x+a-10=2x^3-4x^2+3x-6+a-4\)
\(=\left(2x^3-4x^2\right)+\left(3x-6\right)+a-4\)
\(=2x^2\left(x-2\right)+3\left(x-2\right)+a-4\)
\(\Rightarrow\left(2x^3-4x^2+3x+a-10\right):\left(x-2\right)\)
\(=\left[2x^2\left(x-2\right)+3\left(x-2\right)+a-4\right]:\left(x-2\right)\)
\(=2x^2+3+\dfrac{a-4}{x-2}\)
Để đa thức đã cho chia hết cho \(x-2\) thì \(a-4=0\)
\(\Rightarrow a=4\)