Chứng minh rằng:
a) ( a2)3 = a2.3
b) ( am)n= am.n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a )
`VP= (a+b)^3-3ab(a+b)`
`=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2`
`=a^3+b^3 =VT (đpcm)`
b)
b) Ta có
`VT=a3+b3+c3−3abc`
`=(a+b)3−3ab(a+b)+c3−3abc`
`=[(a+b)3+c3]−3ab(a+b+c)`
`=(a+b+c)[(a+b)2+c2−c(a+b)]−3ab(a+b+c)`
`=(a+b+c)(a2+b2+2ab+c2−ac−bc−3ab)`
`=(a+b+c)(a2+b2+c2−ab−bc−ca)=VP`
a) Ta có:
`VP= (a+b)^3-3ab(a+b)`
`=a^3 + b^3+3ab ( a + b )- 3ab ( a + b )`
`=a^3 + b^3=VT(dpcm)`
b) Ta có
`VT=a^3+b^3+c^3−3abc`
`=(a+b)^3−3ab(a+b)+c^3−3abc`
`=[(a+b)^3+c^3]−3ab(a+b+c)`
`=(a+b+c)[(a+b)^2+c^2−c(a+b)]−3ab(a+b+c)`
`=(a+b+c)(a^2+b^2+2ab+c^2−ac−bc−3ab)`
`=(a+b+c)(a^2+b^2+c^2−ab−bc−ca)=VP`
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
=>ΔABM=ΔACM
=>góc BAM=góc CAM
=>AM là phân giác của góc BAC
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông gócBC
a) Xét △AMB và △ANC có
AB = AC (gt)
BM = CN (gt)
AM = AN (gt)
=> △AMB = △ANC (c.c.c)
b) Vì △ABC có AB=AC
=> △ABC cân tại A
=> góc ABC = góc ACB
mà M, N ∈ BC
=> Góc ABN = góc ACM
a: XétΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: M là trung điểm của BC nên MB=MC=8cm
=>AM=6cm
a, Xét Δ ABM và Δ ACM, có :
AB = AC (gt)
AM là cạnh chung
MB = MC (M là trung điểm BC)
=> Δ ABM = Δ ACM (c.c.c)
b, Ta có : AB = AC (gt)
=> Δ ABC cân tại A
Ta có :
Δ ABC cân tại A
Mà AM là trung tuyến
=> AM là đường cao
=> AM ⊥ BC
c, Ta có :
M là trung điểm
=> BC = 2MB
=> 16 = 2MB
=> MB = 8 (cm)
Xét Δ AMB vuông tại M, có :
\(AB^2=AM^2+MB^2\)
=> \(10^2=AM^2+8^2\)
=> \(36=AM^2\)
=> AM = 6 (cm)
Lời giải:
Đặt $n=2k+1$
Số số hạng: $\frac{n-1}{2}+1=\frac{2k+1-1}{2}+1=k+1$
Tổng A là:
$A=\frac{(k+1)(2k+1+1)}{2}=\frac{2(k+1)^2}{2}=(k+1)^2$ là số chính phương (đpcm)
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
=>ΔABM=ΔACM
=>góc BAM=góc CAM
=>AM là phân giác của góc BAC
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông gócBC
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường phân giác
b: BM=CM=BC/2=6cm
nên AM=8(cm)
a, Ta có AM là trung tuyến của tam giác cân ABC =>AM Đồng thời là đường phân giác và đường trung trực.
b, T a có AM là đường trung trực của tam giác ABC=> góc AMC= 90độ
=> BM=CM=1/2BC=1/2x12=6(cm)
Áp dụng định lý py ta go vào tam giác vuông AMC ta có
AM2+CM2=AC2thay CM=6cm(CMT); AC=10cm(GT)
=>AM2+62=102
=>AM2+36=100
=>AM2 = 100-36=64=82
=>AM =8(cm)